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A liquid-crystal model for friction
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Rate-and-state friction is an empirical approach to the behavior of
a frictional surface. We use a nematic liquid crystal in a channel
between two parallel planes to model frictional sliding. Nematic
liquid crystals model a wide variety of physical phenomena in sys-
tems that rapidly switch between states; they are well studied and
interesting examples of anisotropic non-Newtonian fluids, charac-
terized by the orientational order of a director field �d(�x, t) inter-
acting with the the velocity field �u(�x, t). To model frictional sliding,
we introduce a nonlinear viscosity that changes as a function of the
director field orientation; the specific choice of viscosity function
determines the behavior of the system. In response to sliding of
the top moving plane, the fluid undergoes a rapid increase in resis-
tance followed by relaxation. Strain is localized within the channel.
The director field plays a role analogous to the state variable in
rate-and-state friction.

faulting rheology

F rictional rheologies have a wide range of applications in engi-
neering and geophysics but are poorly understood (1). In this

paper we present a nematic liquid-crystal model for friction in
which the physical properties of the fluid varies with the orienta-
tion of the director field. We consider a fluid layer of prescribed
thickness between two solid blocks. The blocks slide past each
other at a prescribed slip velocity u0. The objective is to deter-
mine the resulting shear stress, which we take to be the frictional
resistance. We take the fluid to be a liquid crystal that introduces
a relaxation process. A fluid-based model is directly applicable to
wet friction, which occurs, for example, when a layer of oil is used
to lubricate two sliding surfaces; however, a fluid model can also
be justified for sliding friction. Dry friction between two sliding
surfaces generates granulation, resulting in the development of
a granular media between the surfaces. In the case of a geologic
fault, this granular material is known as fault gouge and is widely
recognized (2). It is standard practice to model a shear flow in a
granular material as a fluid (3).

Nematic liquid crystals are well studied examples of anisotropic
non-Newtonian fluids. A liquid crystal is a phase of a material
between the solid and liquid phases. The solid phase has strong
intermolecular forces that keep the molecular position and ori-
entation fixed, whereas in the liquid phase, the molecules neither
occupy a specific average position nor do they remain in any par-
ticular orientation; the nematic liquid crystal phase does not have
any positional order, but does possess a certain amount of orien-
tational order. This phase is described by a velocity field, as well
as a director field that describes locally the averaged direction or
orientation of the constituent molecules (4).

Several empirical rate-and-state friction laws have been written
to explain laboratory studies (3, 6, 7). The most widely accepted
form of rate-and-state friction is the slowness law given by

µ = µ0 + a ln
(

u
u0

)
+ b ln

(
u0θ

L

)
,

dθ

dt
= 1 − θu

L , [1]

where u is slip velocity, µ is coefficient of friction, µ0 is the ref-
erence coefficient of friction at reference velocity u0, θ is the

state variable, L is a characteristic slip length, and a and b are
parameters.

The characteristic behavior of these equations is illustrated by
a step increase in the slip velocity from u0 to u1. The friction
coefficient increases instantaneously to the value

µi = µ0 + a ln
(

u1

u0

)
. [2]

A relaxation of the friction coefficient value then takes place to
the final value given by

µ = µ0 − (b − a) ln
(

u1

u0

)
. [3]

If b > a the final coefficient of friction decreases with increas-
ing velocity. This is velocity weakening and leads to the stick–slip
behavior associated with faults.

Liquid-Crystal Model
We use a liquid-crystal fluid, flowing in a horizontal channel
between two parallel plates, to model frictional sliding (Fig. 1).
Liquid crystals are extensively studied and have applications to a
wide variety of engineered systems, including systems that rapidly
switch between states (4). The liquid crystal is characterized by a
directional field, �d(y, t), where y is the vertical distance from the
fixed lower plate and t is time.

The viscosity is given by ν = α(θ)ν1 + (1 − α(θ))ν0, where θ is
the angle of the director field �d with respect to the vertical. The
minimum viscosity ν0 occurs when �d points in the horizontal direc-
tion, whereas the maximum viscosity ν1 occurs when �d is vertical.
The choice of the function α(θ) determines the type of friction
that we simulate.

A third parameter γ denotes the relaxation coefficient of the
director �d. When the velocity of the upper plate u is suddenly
increased, the fluid undergoes a rapid increase in resistance, fol-
lowed by a relaxation. The director �d is deflected from the vertical,
and strain is localized near the center of the channel. The director
field �d plays a role analogous to the state variable in rate-and-
state friction. Reducing the relaxation coefficient γ of �d produces
a sharper increase in traction change as a function of velocity, but
whenγ is very small, numerical instability can enter the simulation.
Reducing the minimum viscosity ν0 to 0 produces stick–slip-like
behavior, but restricts the choice of the function α(θ); the choice
of α(θ), in turn, controls both the size of the traction jump associ-
ated with changes in velocity and the resulting relaxation back to
the equilibrium state.

The model is described by the following equations of motion.
Conservation of momentum requires that

�ut + (�u · ∇)�u = div(ν∇�u) − 1
ρ

∇p in (0, T) × �, [4]
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Fig. 1. Illustration of our fault model, a horizontal channel of thickness L
filled with a liquid-crystal. The horizontal velocity u increases from u = 0 at
the base to u = u at the top. The director field has a constant vertical com-
ponent; the horizontal component is zero at the boundaries and increases to
a maximum at the center.

Where �u is the velocity, ρ is density, ν is kinematic viscosity, and
p is pressure, � denotes either a two- or three-dimensional smooth
open set, and [0, T] denotes the interval of time t on which we study
the evolution of this system.

We assume that the fluid is incompressible, so that

div �u = 0 in [0, T) × �. [5]

The viscosity in the fluid is determined by the orientation of the
vector director field, �d. The director field behaves in a manner
analogous to the velocity:

�dt + ∇�d · �u − ∇�u · �d = γ��d in (0, T) × �, [6]

where γ is a relaxation parameter that plays a role analogous to
the viscosity in Eq. 4. Note that there is an interaction between
the velocity field �u, which changes the orientation of the director
field �d; the director field feeds back to the velocity field through
its influence on viscosity.

The viscosity of the fluid ν depends on a function α, which
depends only on the angle θ between the director field and the
fluid velocity. We choose a relationship between ν and α that is
based on the behavior of liquid crystals (8) but modified to yield
a friction-like behavior.

ν = α(θ)ν1 + (1 − α(θ))ν0, in (0, T) × �, [7]

where cos θ =‖�u×�d‖/(‖�u‖‖�d‖). The required initial and boundary
conditions are taken to be

�u = �uBC on [0, T) × ∂�, [8]

�d = �dBC on [0, T) × ∂�, [9]
�u = �uic on {t = 0} × �, [10]

�d = �dic on {t = 0} × �, [11]

where subscript BC and ic denote specified boundary and initial
conditions.

To use this model to characterize the behavior of a fault, we con-
sider a two-dimensional infinite channel so that � = (−∞, ∞) ×
(0, L) with coordinates (x, y). The channel is filled with a fluid and
we take the horizontal pressure gradient to be zero so that the
flow is driven by the imposed velocity of the upper boundary of
the channel �u.

We let �u(x, y) = (u1(x, y), u2(x, y)) and similarly �d(x, y) =
(d1(x, y), d2(x, y)). Proceeding with the usual channel flow assump-
tions, we assume that the vertical component of the velocity field
vanishes so that u2 = 0, and that the horizontal component only
depends on the vertical coordinate y. We set u( y) := u1( y). For

the channel geometry, we set d2 = 1 and assume that the horizon-
tal component d1 only depends on the vertical coordinate so that
we now take

d( y) := d1( y) [12]

The model is illustrated in Fig. 1.
With these assumptions, and using the notation u′ = ∂u

∂y , the full
system of equations simplifies as follows:

ut = (νu′)′ in (0, T) × (0, L) [13]
dt = γ d′′ + u′ in (0, T) × (0, L) [14]

cos θ = (1 + d2)−1/2 in (0, T) × (0, L) [15]
ν = α(θ)ν1 + (1 − α(θ))ν0, in (0, T) × (0, L) [16]

u(0, t) = 0, u(L, t) = u t ≥ 0 [17]
d(0, t) = d(L, t) = 0 t ≥ 0 [18]

u(y, 0) = u(0)
L

y 0 ≤ y ≤ L [19]

d(y, 0) = 0 0 ≤ y ≤ L [20]

where u(0) is the initial sliding velocity of the top plate.
To simplify our analysis, we introduce nondimensional vari-

ables. Our reference length is the channel width L, our reference
velocity is the initial prescribed velocity of the upper boundary
u(0); the reference viscosity is the viscosity at the boundaries
ν1 where θ = 0, and the reference time is L/u(0). The derived
nondimensional parameters are the Reynolds number:

Re = u(0)L
ν1

,

which governs the viscous behavior, and the director number,

D = ν1

γ
.

The director number D is the ratio of the diffusion coefficient
for vorticity, the kinematic viscosity ν1, to the diffusion coefficient
for the director field, γ . It is also the ratio of the relaxation time for
the two processes. If D >> 1 the velocity field relaxes in a much
shorter time than the director field. If D << 1, the director field
relaxes in a much shorter time than the velocity field. Because D
is the ratio of two relaxation times, it resembles, but is not equiv-
alent to, either the Deborah number (9), which is the ratio of the
relaxation time of a viscous material to the timescale for observa-
tion, or the Weissenberg number, the ratio of a relaxation time to
a process time for a viscoelastic material.

Let u 	→ u(0)u; u 	→ u(0)u; y 	→ Ly; t 	→ Lt/u(0), d 	→ d0d and
ν 	→ ν1ν be the changes of variables; then Eqs. 13 to 20 become

ut = 1
Re

(νu′)′ in (0, T) × (0, 1) [21]

dt = 1
DRe

d′′ + u′ in (0, T) × (0, 1) [22]

cos θ = (1 + d2)−1/2 in (0, T) × (0, 1) [23]
ν = α(θ)ν1 + (1 − α(θ))ν0, in (0, T) × (0, 1) [24]

u(0, t) = 0, u(1, t) = u t ≥ 0 [25]
d(0, t) = d(1, t) = 0 t ≥ 0 [26]

u( y, 0) = y 0 ≤ y ≤ 1 [27]
d( y, 0) = 0 0 ≤ y ≤ 1 [28]

We define a smooth transition function α from the minimum to
maximum states of viscosity in Eq. 16. We choose

α(θ) =
⎧⎨
⎩

1 if 0.9 ≤ cos θ ≤ 1
e10 cos θ − 1

e9 − 1
if 0 ≤ cos θ ≤ 0.9,

[29]
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Fig. 2. Dependence of the transition function α for the viscosity as defined
in Eq. 16 on the angle of the director field θ .

and this dependence is illustrated in Fig. 2. The model is now fully
prescribed.

Simulations
We first give the results in the steady state. The shear stress
(traction) τ is a constant across the channel. Using our nondimen-
sionalization, we have τ 	→ ν1u(0)τ/L. We give the dependence
of the nondimensional traction τ and the maximum value of the
horizontal component of the director field dmax on the Reynolds
number in Fig. 3 for two values of the director number D = 30
and D = 300. The dependence on the Reynolds number is equiv-
alent to a dependence on the velocity of the upper plate u. In both

cases we have velocity strengthening for small Re (small u) and
velocity weakening for large Re (large u). The velocity weakening
behavior is similar to that of rate and state friction but without the
singular behavior at u = 0.

The maximum of the director d indicates the largest angle the
director is deflected by the fluid. In both cases, it increases linearly
initially, while starting to increase more rapidly when it is bigger
than 0.5. Note that when d > 0.5, cos θ = (1 + d2)−1/2 is smaller
than 0.9, in which case α starts to drop dramatically. When this
occurs, τ , the traction at the top, decreases accordingly.

The laboratory experiments used to derive rate-and-state fric-
tion laws use a sudden increase of the sliding velocity from u(0)
to u(0) + δu and then a sudden decrease back to u(0) (5–7, 10).
We next study the transient response of the liquid-crystal layer to
a rapid change in the top-plate sliding velocity u. In the following
simulations, a tanh(tan)-type of transition is considered: the top
plate sliding velocity is defined as

u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if t ∈ [0, 14.9],
u + δu

2
tanh[tan(5(t − 15)π)] if t ∈ [14.9, 15.1],

1 + δu if t ∈ [15.1, 19.9],
u − δu

2
tanh[tan(5(t − 20)π)] if t ∈ [19.9, 20.1],

1 if t ∈ [20.1, 25],

[30]

where u = 1 + δu/2. The change of the top-plate sliding veloc-
ity is shown in Fig. 4. This dependence is a close approximation
to a step increase followed by a step decrease in the upper plate
velocity.

We give numerical solutions for two examples:

Case 1: Re = 0.04129, D = 300 and δu = 0.0145.

Case 2: Re = 0.02443, D = 30 and δu = 0.0914.

Fig. 3. Steady-state dependence of the nondimensional traction τ and the maximum horizontal value of the traction field d on the Reynolds number Re.
Two values of the director number are considered: D = 300 and D = 30. Also shown are the Reynolds numbers of the two transient solutions that we present.
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Fig. 4. Dependence of the nondimensional top plate sliding velocity u on
the nondimensional time t for our transient simulations.

The steady-state behavior is illustrated in Fig. 3. Case 1 is in a
velocity weakening region, and Case 2 is in a velocity strengthen-
ing region. The final steady-state structure of Case 1 is illustrated

in Fig. 5, for t = 25. The fluid shear is strongly concentrated near
the center of the channel, where d is maximum and the viscosity
ν and angle θ are minima.

For both cases τ increases rapidly in when the velocity is
changed (Fig. 6). The director field has not relaxed (Fig. 7) so
that the viscosity is nearly constant during the velocity transient.
Both cases exhibit a transient increase of d, leading to a decrease
in θ and a decrease in the viscosity ν near the center of the chan-
nel. In Case 1, the decrease in the traction force is greater than
the initial increase so that the steady state traction force at the
higher velocity u = u2 is less than the initial value at u = 1. This
corresponds to the velocity weakening behavior for this case as
shown in Fig. 3. There is also a decrease in the traction force dur-
ing the transient in Case 2. However, the decrease is less than the
initial increase so that the steady state traction force at the higher
velocity u = u2 is greater than the initial value at u = 1. This
corresponds to the velocity strengthening behavior given for this
case in Fig. 3. A mirror image behavior is seen when the velocity
is returned to its initial value u = 1.

Discussion
We have introduced a liquid-crystal model for friction. The
objective is to compare the behavior of this model with the
empirical rate-and-state slowness law illustrated in Eqs. 1 and

Fig. 5. Profiles of velocity u, director field d, viscosity ν, and director angle θ across the channel for Case 1 at time t = 25.
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Fig. 6. Dependence of the nondimensional traction force τ on time t for Case 1 (Left) and Case 2 (Right).

Fig. 7. Dependence of the maximum horizontal value of the director field d on time t for Case 1 (Left) and Case 2 (Right).

3. The steady-state behavior of the liquid-crystal model is illus-
trated in Fig. 3. At low Reynolds numbers (low velocities) the
traction increases with an increase in Reynolds number (veloc-
ity). This is velocity strengthening and solutions are stable. At
high Reynolds number (high velocities), the traction decreases
with an increase in Reynolds number (velocity). This is veloc-
ity weakening, and solutions are unstable, leading to stick–slip
behavior.

The transient behavior of the liquid-crystal model is illus-
trated with two cases. Case 1 is the unstable velocity-weakening
region and Case 2 is the stable velocity-strengthening region.
The velocity-weakening Case 1 is very similar to the transient
behavior of rate and state friction when a > b. The velocity-
strengthening Case 2 is very similar to rate and state friction
when b > a.

The velocity-weakening friction is directly responsible for the
stick–slip behavior of faults and the occurrence of earthquakes.
The empirical rate-and-state friction laws based on laboratory
experiments reproduce the velocity weakening friction but the
basic physics of this behavior is poorly understood. The physics
of the velocity weakening in our liquid-crystal model is clear. It
is a direct result of the coupling between the director field and

the velocity field through the viscosity. An increase in fluid shear
results in an alignment of the director field with the flow and a
reduction in the viscosity. This reduction leads to the reduction of
the traction and velocity weakening.

The alignment of the director field is a transient process obeying
the diffusion equation as can be seen from Eq. 6. The weaken-
ing associated with rate-and-state friction has a similar relaxation
from velocity strengthening at short times to velocity weakening
at long times.

Friction is attributed to the roughness of surfaces and/or the
interactions of the granular material between the surfaces. The
interacting surfaces are generally referred to as asperities. We
believe that it is appropriate to associate the reorientation of the
director field to the horizontal direction at high velocities with
the weakening of asperity contacts in faults at higher slip veloc-
ities. The validity of this association remains to be explored in
detail.
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