Homework 2 (due 3/19)

1. The Euclidean transformations t_{1} and t_{2} are given by

$$
t_{1}(\mathbf{x})=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \mathbf{x}+\binom{1}{-1}
$$

and

$$
t_{2}(\mathbf{x})=\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \mathbf{x}+\binom{1}{1}
$$

Determine the composite $t_{2}^{-1} \circ t_{1}$.
2. Write down an example (if one exists) of each type of transformation $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ described below. In each case, justify your answer.
(a) An affine transformation t which is not a Euclidean transformation
(b) A Euclidean transformation t which is not an affine transformation
(c) A transformation t which is both Euclidean and affine
(d) A transformation t which is one-to-one, but is neither Euclidean nor affine
3. Determine the affine transformation which maps the points $(1,-1),(5,-4)$ and $(-2,1)$ to the points $(1,1),(4,0)$ and $(0,2)$, respectively.
4. Determine the equation of the image of the parabola P with equation $y=x^{2}$ under the affine transformation $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
t(\mathbf{x})=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \mathbf{x}
$$

Show the image of the vertex of P is not the vertex of $t(P)$. (This proves that the property of "being a vertex of a parabola" is not an affine property.)

