Notes for Geometry Conic Sections-Exercises

The following problems are taken from Geometry, by David A. Brannan, Matthew F. Esplen and Jeremy J. Gray, 2nd edition

1. This question concerns the parabola E with equation $y^{2}=2 x$ and parametric equations $x=\frac{1}{2} t^{2}, y=t(t \in \mathbb{R})$.
(a) Write down the focus, vertex, axis and directrix of E.
(b) Determine the equation of the chord that joins distinct points P and Q on E with parameters t_{1} and t_{2}, respectively.
(c) Determine the condition on t_{1} and t_{2} such that the chord $P Q$ passes through the focus of E.
2. This question concerns the parabola E with equation $y^{2}=x$ and parametric equations $x=t^{2}, y=t(t \in \mathbb{R})$.
(a) Write down the focus, vertex, axis and directrix of E.
(b) Determine the equation of the chord that joins the distinct points P and Q on E with parameters t_{1} and t_{2}, respectively.
(c) Determine the condition on t_{1} and t_{2} (and so on P and Q) that the focus of E is the midpoint of the chord $P Q$.
3. Let $P Q$ be an arbitrary chord of the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Let M be the midpoint of $P Q$. Prove that the following expression is independent of the choice of P and Q :

$$
\text { gradient (i.e. slope) of } O M \times \text { gradient of } P Q \text {. }
$$

4. Let P be an arbitrary point on the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

and focus $F(a e, 0)$. Let M be the midpoint of $F P$. Prove that M lies on an ellipse whose center is midway between the origin and F.
5. Let P be a point $\left(\sec t, \frac{1}{\sqrt{2}} \tan t\right)$, where $t \in(-\pi / 2, \pi / 2) \cup(\pi / 2,3 \pi / 2)$, on the parabola E with equation $x^{2}-2 y^{2}=1$.
(a) Determine the foci F and F^{\prime} of E.
(b) Determine the gradients (i.e. slopes) of $F P$ and $F^{\prime} P$, when these lines are not parallel to the y-axis.
(c) Determine the point P in the first quadrant on E for which $F P$ is perpendicular to $F^{\prime} P$.

