NAME: \qquad ID No.: \qquad Class: \qquad

1. (10 points) Write down the statement of the Global Gauss-Bonnet theorem.
2. Let T be a torus parametrized by

$$
\mathbf{x}(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u), a>b
$$

Prove that
(a) (10 points) If a geodesic is tangent to the parallel $u=\frac{\pi}{2}$, then it is entirely contained in the region of T given by $-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}$.
(b) (10 points) A geodesic that intersects the parallel $u=0$ under an angle ϕ cannot intersect the parallel $u=\pi$ if $\cos \phi>\frac{a-b}{a+b}$.
3. (10 points) Determine whether a (smooth) closed geodesic can bound a simply connected region on a surface when the Gaussian curvature K is nonpositive. If it can, give an example. If it cannot, explain your reason.
4. (10 points) Consider a surface with $K>0$ that is topologically a cylinder. Prove that there cannot be two disjoint simple closed geodesics both going around the neck of the surface.
5. (20 points) Calculate the Christoffel symbols for the surface of revolution:

$$
\mathbf{x}(u, v)=(f(u) \cos v, f(u) \sin v, g(u)),
$$

with $f^{\prime}(u)^{2}+g^{\prime}(u)^{2}=1$.
6. Consider the portion of the paraboloid M parametrized by

$$
\mathbf{x}(u, v)=\left(u \cos v, u \sin v, u^{2}\right), 0 \leq u \leq r, 0 \leq v \leq 2 \pi
$$

(a) (15 points) Calculate the geodesic curvature of the boundary circle.
(b) (15 points) Calculate the Gaussian curvature K.

You might need the following formulas.

- When $F=0$, we have

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right) .
$$

- When $F=0, e_{1}=\frac{\mathbf{x}_{u}}{\sqrt{E}}$ and $e_{2}=\frac{\mathbf{x}_{v}}{\sqrt{G}}$, we have

$$
\phi_{12}=\frac{1}{2 \sqrt{E G}}\left(-E_{v} u^{\prime}+G_{u} v^{\prime}\right)
$$

