NAME: \qquad ID No.: \qquad Class: \qquad

1. (a) (10 points) Prove that for any regular parametrized curve α, we have

$$
k=\frac{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}} .
$$

Proof. Proposition 2.2, page 14.
(b) (10 points) Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the space curve

$$
\alpha(t)=(\cos t, \sin t, t)
$$

Calculate the curvature k.
Solution. $k=\frac{1}{2}$.
2. (20 points) Calculate the Frenet apparatus ($\mathbf{T}, k, \mathbf{N}, \mathbf{B}, \tau)$ of the following curve:

$$
\alpha(s)=\left(\frac{1}{3}(1+s)^{3 / 2}, \frac{1}{3}(1-s)^{3 / 2}, \frac{1}{\sqrt{2}} s\right), s \in(-1,1) .
$$

Solution. Exercise 1.2.3(a), page 18
3. (15 points) Consider the torus
$\mathbf{x}(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u)(0<b<a), 0 \leq u, v \leq 2 \pi$.
(a) Compute the first fundamental form of the torus.

Solution. $E=b^{2}, F=0, G=(a+b \cos u)^{2}$.
(b) Find the surface area of the torus.

Solution. $\int_{0}^{2 \pi} \int_{0}^{2 \pi} \sqrt{E G-F^{2}} d u d v=4 \pi^{2} a b$.
4. (20 points) Consider the helicoid

$$
\mathbf{x}(u, v)=(u \cos v, u \sin v, b v)
$$

(a) Find the second fundamental form.
(b) Find the matrix of the shape operator.
(c) Find the principal curvatures and the principal directions.
(d) Find the mean curvature H and the Gaussian curvature K.

Solution. HW6.
5. (15 points) Find the arclength of the tractrix

$$
\beta(t)=(t-\tanh t, \operatorname{sech} t), t \geq 0
$$

starting at $(0,1)$ and proceeding to an arbitrary point.
Solution. HW 4.
6. (10 points) Prove or give a counterexample: If M is a surface with Gaussian curvature $K>0$, then the curvature of any curve $C \subset M$ is everywhere positive. (Remember that, by definition, $k \geq 0$.)

Proof. Let C be the curve $\alpha(t)$ with $\alpha(0)=p$ and $\alpha^{\prime}(0)=v$. Assume that $k=0$ at some point p in the curve C. Then, by Meusnier's formula and Euler's formula, we have $I I_{p}(v, v)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta=k_{n}=k \cos \phi=0$. Since $\cos ^{2} \theta \geq 0$ and $\sin ^{2} \theta \geq 0$, we have the Gaussian curvature $K(p)=k_{1} k_{2} \leq 0$. This contradicts the assumption that $K>0$.

