Notes for Geometry Recognizing Conics - Exercises

Problems are taken from Geometry, by David A. Brannan, Matthew F. Esplen and Jeremy J. Gray, 2nd edition

1. Let the Euclidean transformations t_1 and t_2 of \mathbb{R}^2 be given by

$$t_1(\mathbf{x}) = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

and

$$t_2(\mathbf{x}) = \begin{pmatrix} -\frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix} \mathbf{x} + \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

Determine $t_1 \circ t_2$ and $t_2 \circ t_1$.

2. Prove that if t_1 is a Euclidean transformation of \mathbb{R}^2 given by

$$t_1(\mathbf{x}) = U\mathbf{x} + a \quad (\mathbf{x} \in \mathbb{R}^2),$$

then

(a) the transformation of \mathbb{R}^2 given by

$$t_2(\mathbf{x}) = U^{-1}\mathbf{x} - U^{-1}a \quad (\mathbf{x} \in \mathbb{R}^2)$$

is also a Euclidean transformation;

- (b) the transformation t_2 is the inverse of t_1 .
- 3. Determine the inverse of the Euclidean transformation given by

$$t(\mathbf{x}) = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

- 4. Which of the following sets consists of figures that are Euclidean-congruent to each other?
 - (a) The set of all ellipses
 - (b) The set of all line segments of length 1
 - (c) The set of all triangles
 - (d) The set of all squares that have sides of length 2