Notes for Geometry Recognizing Conics - Exercises

Problems are taken from Geometry, by David A. Brannan, Matthew F. Esplen and Jeremy J. Gray, 2nd edition

1. Let the Euclidean transformations t_{1} and t_{2} of \mathbb{R}^{2} be given by

$$
t_{1}(\mathbf{x})=\left(\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right) \mathbf{x}+\binom{1}{-2}
$$

and

$$
t_{2}(\mathrm{x})=\left(\begin{array}{cc}
-\frac{4}{5} & \frac{3}{5} \\
\frac{3}{5} & \frac{4}{5}
\end{array}\right) \mathrm{x}+\binom{-2}{1} .
$$

Determine $t_{1} \circ t_{2}$ and $t_{2} \circ t_{1}$.
2. Prove that if t_{1} is a Euclidean transformation of \mathbb{R}^{2} given by

$$
t_{1}(\mathbf{x})=U \mathbf{x}+a \quad\left(\mathbf{x} \in \mathbb{R}^{2}\right)
$$

then
(a) the transformation of \mathbb{R}^{2} given by

$$
t_{2}(\mathbf{x})=U^{-1} \mathbf{x}-U^{-1} a \quad\left(\mathbf{x} \in \mathbb{R}^{2}\right)
$$

is also a Euclidean transformation;
(b) the transformation t_{2} is the inverse of t_{1}.
3. Determine the inverse of the Euclidean transformation given by

$$
t(\mathbf{x})=\left(\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right) \mathbf{x}+\binom{1}{-2}
$$

4. Which of the following sets consists of figures that are Euclidean-congruent to each other?
(a) The set of all ellipses
(b) The set of all line segments of length 1
(c) The set of all triangles
(d) The set of all squares that have sides of length 2
