Homework 1 (due 3/2)

1. Let P be a point $\left(\sec t, \frac{1}{\sqrt{2}} \tan t\right)$, where $t \in(-\pi / 2, \pi / 2) \cup(\pi / 2,3 \pi / 2)$, on the hyperbola E with equation $x^{2}-2 y^{2}=1$.
(a) Determine the foci F and F^{\prime} of E.
(b) Determine the slopes of $F P$ and $F^{\prime} P$, when these lines are not parallel to the y-axis.
(c) Determine the point P in the first quadrant on E for which $F P$ is perpendicular to $F^{\prime} P$.
2. This question concerns the parabola $y^{2}=4 a x(a>0)$ with parametric equations $x=a t^{2}, y=2 a t$ and focus F. Let P and Q be points on the parabola with parameters t_{1} and t_{2}, respectively.
(a) If $P Q$ subtends a right angle at the vertex O of the parabola, prove that $t_{1} \cdot t_{2}=-4$.
(b) If $t_{1}=2$ and $P Q$ is perpendicular to $O P$, prove that $t_{2}=-4$.
3. This question concerns the rectangular hyperbola $x y=c^{2}(c>0)$ with parametric equations $x=c t, y=c / t$. Let P and Q be points on the hyperbola with parameters $t_{1}\left(t_{1}>0\right)$ and $t_{2}\left(t_{2}>0\right)$, respectively.
(a) Determine the equation of the chord $P Q$.
(b) Determine the coordinates of the point N where $P Q$ meets the x-axis.
(c) Determine the midpoint M of $P Q$.
(d) Prove that $O M=M N$, where O is the origin.
4. Let E be the conic in \mathbb{R}^{2} with the equation

$$
5 x^{2}+4 x y+5 y^{2}+20 x+8 y-1=0
$$

Use the methods of linear algebra to answer the following questions.
(a) To classify the conic E.
(b) Write the equation in standard form.
(c) Determine its center/vertex and axis.
(d) Sketch the graph.

