NAME: \qquad ID No.: \qquad Class: \qquad

1. (10 points) Write down the statement of the Global Gauss-Bonnet theorem.
2. Let T be a torus parametrized by

$$
\mathbf{x}(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u), a>b
$$

(a) (10 points) Prove that a geodesic that intersects the parallel $u=0$ under an angle ϕ cannot intersect the parallel $u=\pi$ if $\cos \phi>\frac{a-b}{a+b}$.

Proof. Use Clairaut's relation.
(b) (10 points) Compute the holonomy around the parallel $u=u_{0}$ on T.

Solution. $2 \pi \sin u_{0}$
3. (10 points) Determine whether a (smooth) closed geodesic can bound a simply connected region on a surface when the Gaussian curvature $K>0$. If it can, give an example. If it cannot, explain your reason.

Solution. Yes, it can. Consider great circles on a sphere.
4. (12 points) Suppose $F=0$ and the $u-$ and $v-$ curves are geodesics. Prove that the surface is flat (i.e. $K=0$).

Proof. First, prove that E is a function depending only on u and G is a function depending only on v. Then use the formula for K below to show that $K=0$.
5. (18 points) Calculate the Christoffel symbols for a helicoid:

$$
\mathbf{x}(u, v)=(u \cos v, u \sin v, v) .
$$

Solution. $\Gamma_{u u}^{u}=\Gamma_{u u}^{v}=\Gamma_{u v}^{u}=\Gamma_{v v}^{v}=0, \Gamma_{u v}^{v}=\frac{u}{u^{2}+1}, \Gamma_{v v}^{u}=-u$.
6. Consider the portion of the paraboloid M parametrized by

$$
\mathbf{x}(u, v)=\left(u \cos v, u \sin v, u^{2}\right), 0 \leq u \leq r, 0 \leq v \leq 2 \pi
$$

(a) (15 points) Calculate the geodesic curvature of the boundary circle.

Solution. $\frac{1}{r \sqrt{4 r^{2}+1}}$
(b) (15 points) Calculate the Gaussian curvature K.

Solution. $\frac{4}{\left(4 u^{2}+1\right)^{2}}$
You might need the following formulas.

- Geodesic equations

$$
\begin{array}{r}
u^{\prime \prime}(t)+\Gamma_{u u}^{u} u^{\prime}(t)^{2}+2 \Gamma_{u v}^{u} u^{\prime}(t) v^{\prime}(t)+\Gamma_{v v}^{u} v^{\prime}(t)^{2}=0 \\
v^{\prime \prime}(t)+\Gamma_{u u}^{v} u^{\prime}(t)^{2}+2 \Gamma_{u v}^{v} u^{\prime}(t) v^{\prime}(t)+\Gamma_{v v}^{v} v^{\prime}(t)^{2}=0
\end{array}
$$

- When $F=0$, we have

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right) .
$$

- When $F=0, e_{1}=\frac{\mathbf{x}_{u}}{\sqrt{E}}$ and $e_{2}=\frac{\mathbf{x}_{v}}{\sqrt{G}}$, we have

$$
\phi_{12}=\frac{1}{2 \sqrt{E G}}\left(-E_{v} u^{\prime}+G_{u} v^{\prime}\right) .
$$

