Geometry

NAME: \qquad Id No.: \qquad Class: \qquad

1. (a) (10 pts) Find the arclength of the catenary $\alpha(t)=(t, \cosh t)$ for $0 \leq t \leq b$. Solution. $\sinh b$
(b) (10 pts) Reparametrize the catenary by arclength.

Solution. $\beta(s)=\left(\log \left(s+\sqrt{s^{2}+1}\right), \sqrt{s^{2}+1}\right)$
2. (20 pts) Calculate the Frenet apparatus ($\mathbf{T}, k, \mathbf{N}, \mathbf{B}, \tau)$ of the following curve:

$$
\alpha(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)
$$

Solution. $\mathbf{T}=\frac{1}{\sqrt{3}}(\cos t-\sin t, \cos t+\sin t, 1), k=\frac{\sqrt{2}}{3 e^{t}}$,
$\mathbf{N}=\frac{1}{\sqrt{2}}(-\cos t-\sin t, \cos t-\sin t, 0), \mathbf{B}=\frac{1}{\sqrt{6}}(\sin t-\cos t,-\cos t-\sin t, 2)$, $\tau=\frac{1}{3 e^{t}}$
3. (10 pts) Suppose C is a simple closed plane curve with $0<\kappa \leq c$. Prove that length $(C) \geq 2 \pi / c$.

Proof. Let $L=\operatorname{length}(C)$. Then by Hopf rotation theorem, we have

$$
2 \pi=\int_{0}^{L} \kappa(s) d s \leq \int_{0}^{L} c d s=c L
$$

so $L \geq 2 \pi / c$.
4. Consider the helicoid

$$
\mathbf{x}(u, v)=(u \cos v, u \sin v, b v)
$$

(a) (6 pts) Compute the first fundamental form of the helicoid.

Solution. $E=1, F=0, G=u^{2}+b^{2}$
(b) (10 pts) Find the surface area of a portion of the helicoid $(1<u<3,0 \leq v \leq 2 \pi)$.

Solution. $\pi\left(3 \sqrt{b^{2}+9}+b^{2} \ln \left|\sqrt{b^{2}+9}+3\right|-\sqrt{b^{2}+1}-b^{2} \ln \left|\sqrt{b^{2}+1}+1\right|\right)$
5. Consider the torus

$$
\mathbf{x}(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u)(0<b<a)
$$

(a) (6 pts) Find the first fundamental form.

Solution. $E=b^{2}, F=0, G=(a+b \cos u)^{2}$
(b) (4 pts) Find the surface unit normal.

Solution. $(-\cos u \cos v,-\cos u \sin v,-\sin u)$
(c) (6 pts) Find the second fundamental form.

Solution. $l=b, m=0, n=\cos u(a+b \cos u)$
(d) $(4 \mathrm{pts})$ Find the matrix of the shape operator. Solution. $\left(\begin{array}{cc}1 / b & 0 \\ 0 & \cos u /(a+b \cos u)\end{array}\right)$
(e) (4 pts) Find the mean curvature H and the Gaussian curvature K.

Solution. $H=\frac{1}{2}\left(\frac{1}{b}+\frac{\cos u}{a+b \cos u}\right), K=\frac{\cos u}{b(a+b \cos u)}$
6. (10 pts) Apply Meusnier's Formula to prove that the curvature of any curve lying on a sphere of radius a satisfies $\kappa \geq 1 / a$.

Proof. By Example 2 of P.46, $S_{p}=-\frac{1}{a}$ Id. Hence, for any unit vector v and any p on the sphere, $I I_{p}(v, v)=S_{p}(v) \cdot v=-\frac{1}{a}$. Let $\alpha(s)$ be a unit-speed curve with curvature k on the sphere such that $\alpha(0)=p$ and $\alpha^{\prime}(0)=v$. By Meusnier's formula,

$$
-\frac{1}{a}=I I_{p}(v, v)=k_{n}=k \cos \phi
$$

where ϕ is the angle between the surface unit normal n and the principal unit normal N of the curve. Therefore, $k \geq|k \cos \phi|=\frac{1}{a}$.
2. (10 points) Evaluate the integrals: $\int \sec x d x$ and $\int \sec ^{3} x d x$.

$$
\begin{aligned}
\int \sec x d x & =\int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x \\
(\operatorname{let} u & =\sec x+\tan x \\
d u & \left.=\sec x \tan x+\sec ^{2} x d x\right) \\
& =\int \frac{1}{u} d u \\
& =\ln |u|+c \\
& =\ln |\sec x+\tan x|+C \\
\int \sec ^{3} x d x & =\int \underbrace{\sec x}_{f} \cdot \underbrace{\sec ^{2} x d x}_{g^{\prime}}
\end{aligned}
$$

$$
=\sec x \tan x-\int \sec x \tan x \cdot \tan x d x
$$

integration by parts

$$
\begin{aligned}
& =\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x \\
& =\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x \\
\Rightarrow 2 \int \sec ^{3} x d x & =\sec x \tan x+\ln |\sec x+\tan x|+C_{1} \\
\Rightarrow \quad \int \sec ^{3} x d x & =\frac{1}{2}(\sec x \tan x+\ln |\sec x+\tan x|)+C_{.}
\end{aligned}
$$

