1.6.29(a):

Proof. $\dim(W_1 \cap W_2) \le \dim(V)$

 $\Rightarrow W_1 \cap W_2$ has a finite basis $\beta = \{u_1, u_2, \cdots, u_k\}$.

We can extend β to a basis $\beta_1 = \{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_m\}$ for W_1 and to a basis $\beta_2 = \{u_1, u_2, \dots, u_k, k_1, k_2, \dots, k_p\}$ for W_2 .

Let $\alpha = \{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_m, w_1, w_2, \dots, w_p\}.$

We claim that α is a basis for $W_1 + W_2$.

To prove the claim, we need to check that

1. α is linearly independent.

Let $a_1u_1 + \cdots + a_ku_k + b_1v_1 + \cdots + b_mv_m + c_1w_1 + \cdots + c_pw_p = 0$, for some scalars $a_1, \dots, a_k, b_1, \dots, b_m, c_1, \dots, c_p$.

Then $(-b_1)v_1 + \dots + (-b_m)v_m = a_1u_1 + \dots + a_ku_k + c_1w_1 + \dots + c_pw_p \in W_1 \cap W_2$.

Since β is a basis for $W_1 \cap W_2$, we have $(-b_1)v_1 + \cdots + (-b_m)v_m = d_1u_1 + \cdots + d_ku_k$ for some scalars d_1, \dots, d_k .

$$\Rightarrow d_1u_1 + \dots + d_ku_k + b_1v_1 + \dots + b_mv_m = 0$$

$$\Rightarrow d_1 = \cdots = d_k = b_1 = \cdots = b_m = 0$$
, since β_1 is a basis for W_1 .

$$\Rightarrow a_1u_1 + \dots + a_ku_k + c_1w_1 + \dots + c_pw_p = 0$$

$$\Rightarrow a_1 = \cdots = a_k = c_1 = \cdots = c_p = 0$$
, since β_2 is a basis for W_2 .

Hence α is linearly independent.

2. $W_1 + W_2 = \operatorname{span}(\alpha)$.

Let $u = v + w \in W_1 + W_2$, where $v \in W_1$ and $w \in W_2$, be any vector in $W_1 + W_2$. Since β_1 is a basis for W_1 and β_2 is a basis for W_2 , we can find some scalars $x_1, \dots, x_k, y_1, \dots, y_m, z_1, \dots, z_k, t_1, \dots, t_p$ such that

$$u = (x_1u_1 + \dots + x_ku_k + y_1v_1 + \dots + y_mv_m) + (z_1u_1 + \dots + z_ku_k + t_1w_1 + \dots + t_pw_p)$$

= $((x_1 + z_1)u_1 + \dots + (x_k + z_k)u_k + y_1v_1 + \dots + y_mv_m + t_1w_1 + \dots + t_pw_p)$

That is, $W_1 + W_2 \subseteq \operatorname{span}(\alpha)$.

It is easy to see that $\operatorname{span}(\alpha) \subseteq W_1 + W_2$.

Hence $W_1 + W_2 = \operatorname{span}(\alpha)$.

Therefore, α is a basis for $W_1 + W_2$.

Finally, we have

$$\dim(W_1 + W_2) = k + m + p = (k + m) + (k + p) - k = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

Г