2.1.14 (a):

Proof. (\Rightarrow) Suppose that T is one-to-one. Let S be a linearly independent subset of V. We want to show that T(S) is linearly independent. Suppose that T(S) is linearly dependent. Then there exist $v_1, \dots, v_n \in S$ and some not all zero scalars a_1, \dots, a_n such that

$$a_1T(v_1) + \dots + a_nT(v_n) = 0.$$

Since T is linear,

$$a_1T(v_1) + \dots + a_nT(v_n) = T(a_1v_1 + \dots + a_nv_n) = 0.$$

By assumption that T is one-to-one, we also know that $N(T) = \{0\}$. Hence

$$a_1v_1 + \dots + a_nv_n = 0.$$

But S is linearly independent and $v_1, \dots, v_n \in S$, we have $a_1 = \dots = a_n = 0$. $\rightarrow \leftarrow$

Since S is arbitrary, T carries linearly independent subsets of V onto linerly independent subsets of W.

(\Leftarrow) Suppose that T carries linearly independent subsets of V onto linearly independent subsets of W. Assume that T(x) = 0. If the set $\{x\}$ is linearly independent, then by assumption we conclude that $\{0\}$ is linearly independent, which is a contradiction. Hence the set $\{x\}$ is linearly dependent. This implies that x = 0. That is, $N(T) = \{0\}$. Therefore, T is one-to-one.

2.1.14 (b):

Proof. (\Rightarrow) Suppose that S is linearly independent. Then, by part (a), we have that T(S) is linearly independent.

(\Leftarrow) Suppose that T(S) is linearly independent. Assume that S is linearly dependent. Then there exist $v_1, \dots, v_n \in S$ and some not all zero scalars a_1, \dots, a_n such that

$$a_1v_1 + \dots + a_nv_n = 0.$$

Since T is linear, we have

$$0 = T(0) = T(a_1v_1 + \dots + a_nv_n) = a_1T(v_1) + \dots + a_nT(v_n).$$

But T(S) is linearly independent, this implies that $a_1 = \cdots = a_n = 0$. $\rightarrow \leftarrow$

Hence, S is linearly independent.

2.1.14 (c):

Proof. Suppose that $\beta = \{v_1, \dots, v_n\}$ is a basis for V and T is one-to-one and onto. We want to show that $T(\beta)$ is linearly independent and $\operatorname{span}(T(\beta)) = W$. Since T is one-to-one and β is linearly independent, by part (b), $T(\beta)$ is linearly independent.

Next, since β is a basis for V, by Theorem 2.2, $R(T) = \text{span}(T(\beta))$. But since T is onto, we have R(T) = W. Then $W = \text{span}(T(\beta))$. Therefore $T(\beta)$ is a basis for W.