2.1.14 (a):

Proof. (\Rightarrow) Suppose that T is one-to-one. Let S be a linearly independent subset of V. We want to show that $T(S)$ is linearly independent. Suppose that $T(S)$ is linearly dependent. Then there exist $v_{1}, \cdots, v_{n} \in S$ and some not all zero scalars a_{1}, \cdots, a_{n} such that

$$
a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0
$$

Since T is linear,

$$
a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=0
$$

By assumption that T is one-to-one, we also know that $N(T)=\{0\}$. Hence

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0
$$

But S is linearly independent and $v_{1}, \cdots, v_{n} \in S$, we have $a_{1}=\cdots=a_{n}=0$. $\rightarrow \leftarrow$
Since S is arbitrary, T carries linearly independent subsets of V onto linerly independent subsets of W.
(\Leftarrow) Suppose that T carries linearly independent subsets of V onto linearly independent subsets of W. Assume that $T(x)=0$. If the set $\{x\}$ is linearly independent, then by assumption we conclude that $\{0\}$ is linearly independent, which is a contradiction. Hence the set $\{x\}$ is linearly dependent. This implies that $x=0$. That is, $N(T)=\{0\}$. Therefore, T is one-to-one.

2.1.14 (b):

Proof. (\Rightarrow) Suppose that S is linearly independent. Then, by part (a), we have that $T(S)$ is linearly independent.
(\Leftarrow) Suppose that $T(S)$ is linearly independent. Assume that S is linearly dependent. Then there exist $v_{1}, \cdots, v_{n} \in S$ and some not all zero scalars a_{1}, \cdots, a_{n} such that

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0
$$

Since T is linear, we have

$$
0=T(0)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)
$$

But $T(S)$ is linearly independent, this implies that $a_{1}=\cdots=a_{n}=0$.
$\rightarrow \leftarrow$
Hence, S is linearly independent.

2.1.14 (c):

Proof. Suppose that $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis for V and T is one-to-one and onto. We want to show that $T(\beta)$ is linearly independent and $\operatorname{span}(T(\beta))=W$. Since T is one-to-one and β is linearly independent, by part (b), $T(\beta)$ is linearly independent.
Next, since β is a basis for V, by Theorem $2.2, R(T)=\operatorname{span}(T(\beta))$. But since T is onto, we have $R(T)=W$. Then $W=\operatorname{span}(T(\beta))$. Therefore $T(\beta)$ is a basis for W.

