
Linear Algebra Solution to Midterm 1

Problem 1: Let V = {(a1, a2) : a1, a2 ∈ R}. Define addition of elements of V coordi-

natewise, and for (a1, a2) in V and c ∈ R, define

c(a1, a2) =
{(0,0) if c=0

(ca1,a2c ) if c 6=0.

Is V a vector space over R with these operations? Justify your answer. (5 points)

Solution. No! If c, d ∈ R, c+ d 6= 0, c 6= 0, d 6= 0, then

(c+ d)(a1, a2) = ((c+ d)a1,
a2
c+ d

)

usually is not equal to

c(a1, a2) + d(a1, a2) = (ca1 + da1,
a1
c

+
a2
d

).

(VS8) does not hold. �

Problem 2: Let W1 and W2 be subspaces of a vector space V . Prove that W1 ∪W2 is a

subspace of V if and only if W1 ⊆ W2 or W2 ⊆ W1. (9 points)

Proof. (⇐) that W1 ⊆ W2 or W2 ⊆ W1, then W1 ∪W2 = W1 or W2.

Since W1 and W2 are subspaces V ,

we have W1 ∪W2 is also a subspace of V

(⇒) Suppose that W1 ∪W2 is a subspace of V .

Also suppose that W1 6⊆ W2 and W2 6⊆ W1, then there exist u, v ∈ V such that u ∈
W1\W2, v ∈ W2\W1.

⇒ u, v ∈ W1 ∪W2 ⇒ u+ v ∈ W1 ∪W2.

If u+ v ∈ W1, then (−u) + (u+ v) ∈ W1 ⇒ v ∈ W1 →←
If u+ v ∈ W2, then (u+ v) + (−v) ∈ W2 ⇒ u ∈ W2 →←
Hence W1 ⊆ W2 or W2 ⊂ W1. �

Problem 3: Show that if S1 and S2 are arbitrary subsets of a vector space V , then

span(S1 ∪ S2) = span(S1) + span(S2). (9 points)
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Proof. Let u ∈ span(S1 ∪ S2), then u =
∑m

i=1 aivi +
∑n

j=1 bjwj, for some scalars ai, i =

1, · · · ,m, bj, j = 1, · · · , n, where vi, i = 1, · · · ,m, are in S1 and wj, j = 1, · · · , n, are in

S2. Since
∑m

i=1 aivi is in span(S1) and
∑n

j=1 bjwi is in span(S2), we have u ∈ span(S1) +

span(S2). Hence span(S1 ∪ S2) ⊆ span(S1) + span(S2).

Now let v = x + y ∈ span(S1) + span(S2), where x ∈ span(S1) and y ∈ span(S2). We

can write x =
∑m

i=1 aivi, for some scalars ai, i = 1, · · · ,m and vi ∈ S1, i = 1, · · · ,m
and y =

∑n
j=1 bjwj, for some scalars bj, j = 1, · · · , n and wi ∈ S2, j = 1, · · · , n. Then

we can see that v = x + y =
∑m

i=1 aivi +
∑n

j=1 bjwj is in span(S1 ∪ S2), since vi, i =

1, · · · ,m,wj, j = 1, · · · , n are in S1 ∪ S2. Hence span(S1) + span(S2) ⊆ span(S1 ∪ S2).

Therefore span(S1 ∪ S2) = span(S1) + span(S2). �

Problem 4: Prove that a set S is linear dependent if and only if S = {0} or there exist

distinct vectors v, u1, u2, · · · , un in S such that v is a linear combination of u1, u2, · · · , un.

(9 points)

Proof. (⇒) If S is linearly dependent and S 6= {0}, then there exist distinct vectors

u0, u1, · · · , un ∈ S such that

a0u0 + a1u1 + · · ·+ anun = 0

with at least one of the scalars a0, a1, · · · , an is not zero, say a0 6= 0.

Then we have

u0 =

(
−a1
a0

)
u1 +

(
−a2
a0

)
u2 + · · ·+

(
−an
a0

)
un.

Hence v = u0 is a linear combination of u1, u2, · · · , un.

(⇐) If S = {0}, then it’s clear that S is linearly dependent.

Assume that there exist distinct vectors v, u1, u2, · · · , un ∈ S such that v is a linear

combination of u1, u2, · · · , un, say

v = a1u1 + a2u2 + · · · anun,

for some scalars a1, a2, · · · , an.

Then we have

0 = (−1)v + a1u1 + a2u2 + · · · anun.

Hence S is linearly dependent. �



Problem 5: Prove that if W1 is any subspace of a finite-dimensional vector space V ,

then there exists a subspace W2 of V such that V = W1 ⊕W2. (9 points)

Proof. Let β = {u1, · · · , un} be a basis for W1. Since W1 is a subspace of V . By Replace-

ment Theorem, we can extend β to a basis for V , say α = {u1, · · · , un, un+1, · · · , um}. Let

W2 = span({un+1, · · · , um}).
Claim that V = W1 ⊕W2.

1. V = W1 +W2.

If v ∈ V , then

v =
m∑
i=1

aiui =
n∑

i=1

aiui +
m∑

i=n+1

aiui ∈ W1 +W2, for some scalars ai, i = 1, · · · ,m.

This implies that V ⊆ W1 + W2. But by the definition of W1 + W2, we also know that

W1 +W2 ⊆ V . Hence V = W1 +W2.

2. W1 ∩W2 = {0}.
Let u ∈ W1∩W2. Then u =

∑n
i=1 biui =

∑m
i=n+1 ciui, for some scalars b1, · · · , bn, cn+1, · · · , cm.

Then we have
n∑

i=1

biui +
m∑

i=n+1

(−ci)ui = 0.

But α is linearly independent, since α is a basis. Hence b1 = · · · = bn = cn+1 = · · · = cm =

0. This implies that u = 0. That is W1 ∩W2 = {0}. By 1 and 2, we have V = W1 ⊕W2.

We are done! �

Problem 6: Prove that if W1 and W2 are finite-dimensional subspaces of a vector space

V , then the subspace W1 + W2 is finite-dimensional, and dim(W1 + W2) = dim(W1) +

dim(W2)− dim(W1 ∩W2). (9 points)

(Hint: Start with a basis {u1, u2, · · · , uk} for W1 ∩ W2 and extend this set to a basis

{u1, u2, · · · , uk, v1, v2, · · · , vm} for W1 and to a basis {u1, u2, · · · , uk, w1, w2, · · · , wp} for

W2.)

Proof. dim(W1 ∩W2) ≤ dim(V )

⇒W1 ∩W2 has a finite basis β = {u1, u2, · · · , uk}.
We can extend β to a basis β1 = {u1, u2, · · · , uk, v1, v2, · · · , vm} for W1 and to a basis

β2 = {u1, u2, · · · , uk, k1, k2, · · · , kp} for W2.

Let α = {u1, u2, · · · , uk, v1, v2, · · · , vm, w1, w2, · · · , wp}.
We claim that α is a basis for W1 +W2.



To prove the claim, we need to check that

1. α is linearly independent.

Let a1u1 + · · · + akuk + b1v1 + · · · + bmvm + c1w1 + · · · + cpwp = 0, for some scalars

a1, · · · , ak, b1, · · · , bm, c1, · · · , cp.
Then (−b1)v1 + · · ·+ (−bm)vm = a1u1 + · · ·+ akuk + c1w1 + · · ·+ cpwp ∈ W1 ∩W2.

Since β is a basis for W1 ∩W2, we have (−b1)v1 + · · ·+ (−bm)vm = d1u1 + · · ·+ dkuk for

some scalars d1, · · · , dk.

⇒ d1u1 + · · ·+ dkuk + b1v1 + · · ·+ bmvm = 0

⇒ d1 = · · · = dk = b1 = · · · = bm = 0, since β1 is a basis for W1.

⇒ a1u1 + · · ·+ akuk + c1w1 + · · ·+ cpwp = 0

⇒ a1 = · · · = ak = c1 = · · · = cp = 0, since β2 is a basis for W2.

Hence α is linearly independent.

2. W1 +W2 = span(α).

Let u = v + w ∈ W1 +W2, where v ∈ W1 and w ∈ W2, be any vector in W1 +W2.

Since β1 is a basis forW1 and β2 is a basis forW2, we can find some scalars x1, · · · , xk, y1, · · · , ym, z1, · · · , zk, t1, · · · , tp
such that

u = (x1u1 + · · ·+ xkuk + y1v1 + · · · ymvm) + (z1u1 + · · ·+ zkuk + t1w1 + · · ·+ tpwp)

=
(
(x1 + z1)u1 + · · ·+ (xk + zk)uk + y1v1 + · · · ymvm + t1w1 + · · ·+ tpwp

)
That is, W1 +W2 ⊆ span(α).

It is easy to see that span(α) ⊆ W1 +W2.

Hence W1 +W2 = span(α).

Therefore, α is a basis for W1 +W2.

Finally, we have

dim(W1 +W2) = k+m+p = (k+m)+(k+p)−k = dim(W1)+dim(W2)−dim(W1∩W2).

�

Bonus Problem 7: Prove that the intersection of three 6-dimensional subspaces in R8

is not the zero vector space {0}. (5 points)

Proof. Let U, V and W be three 6-dimensional subspaces of R8.

Then U + V is a subspace of R8 and dim(U + V ) ≤ 8.



By Problem 6, we have

dim(U ∩ V ) = dim(U) + dim(V )− dim(U + V ) ≥ 6 + 6− 8 = 4.

Similarly, we have dim(U ∩W ) ≥ 4.

Since U ∩ V ⊆ U and U ∩W ⊆ U , U ∩ V and U ∩W are subspaces of U .

This implies that (U ∩ V ) + (U ∩W ) is a subspace of U .

Hence, dim ((U ∩ V ) + (U ∩W )) ≤ dim(U) = 6.

By Problem 6 again, we have

dim(U ∩ V ∩W ) = dim ((U ∩ V ) ∩ (U ∩W ))

= dim(U ∩ V ) + dim(U ∩W )− dim ((U ∩ V ) + (U ∩W ))

≥ 4 + 4− 6 = 2.

Therefore, the intersection of three 6-dimensional subspaces in R8 has at least dimension

two and can not be the zero vector space {0}. �


