Problem 1: Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. Define addition of elements of V coordinatewise, and for $\left(a_{1}, a_{2}\right)$ in V and $c \in \mathbb{R}$, define

$$
c\left(a_{1}, a_{2}\right)= \begin{cases}(0,0) & \text { if } c=0 \\ \left(c a_{1}, \frac{a_{2}}{c}\right) & \text { if } c \neq 0 .\end{cases}
$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer. (5 points)

Solution. No! If $c, d \in \mathbb{R}, c+d \neq 0, c \neq 0, d \neq 0$, then

$$
(c+d)\left(a_{1}, a_{2}\right)=\left((c+d) a_{1}, \frac{a_{2}}{c+d}\right)
$$

usually is not equal to

$$
c\left(a_{1}, a_{2}\right)+d\left(a_{1}, a_{2}\right)=\left(c a_{1}+d a_{1}, \frac{a_{1}}{c}+\frac{a_{2}}{d}\right) .
$$

(VS8) does not hold.

Problem 2: Let W_{1} and W_{2} be subspaces of a vector space V. Prove that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$. (9 points)

Proof. (\Leftarrow) that $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$, then $W_{1} \cup W_{2}=W_{1}$ or W_{2}.
Since W_{1} and W_{2} are subspaces V, we have $W_{1} \cup W_{2}$ is also a subspace of V
(\Rightarrow) Suppose that $W_{1} \cup W_{2}$ is a subspace of V.
Also suppose that $W_{1} \nsubseteq W_{2}$ and $W_{2} \nsubseteq W_{1}$, then there exist $u, v \in V$ such that $u \in$ $W_{1} \backslash W_{2}, v \in W_{2} \backslash W_{1}$.
$\Rightarrow u, v \in W_{1} \cup W_{2} \Rightarrow u+v \in W_{1} \cup W_{2}$.
If $u+v \in W_{1}$, then $(-u)+(u+v) \in W_{1} \Rightarrow v \in W_{1} \rightarrow \leftarrow$
If $u+v \in W_{2}$, then $(u+v)+(-v) \in W_{2} \Rightarrow u \in W_{2} \rightarrow \leftarrow$ Hence $W_{1} \subseteq W_{2}$ or $W_{2} \subset W_{1}$.

Problem 3: Show that if S_{1} and S_{2} are arbitrary subsets of a vector space V, then $\operatorname{span}\left(S_{1} \cup S_{2}\right)=\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right) .(9$ points $)$

Proof. Let $u \in \operatorname{span}\left(S_{1} \cup S_{2}\right)$, then $u=\sum_{i=1}^{m} a_{i} v_{i}+\sum_{j=1}^{n} b_{j} w_{j}$, for some scalars $a_{i}, i=$ $1, \cdots, m, b_{j}, j=1, \cdots, n$, where $v_{i}, i=1, \cdots, m$, are in S_{1} and $w_{j}, j=1, \cdots, n$, are in S_{2}. Since $\sum_{i=1}^{m} a_{i} v_{i}$ is in $\operatorname{span}\left(S_{1}\right)$ and $\sum_{j=1}^{n} b_{j} w_{i}$ is in $\operatorname{span}\left(S_{2}\right)$, we have $u \in \operatorname{span}\left(S_{1}\right)+$ $\operatorname{span}\left(S_{2}\right)$. Hence $\operatorname{span}\left(S_{1} \cup S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)$.

Now let $v=x+y \in \operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)$, where $x \in \operatorname{span}\left(S_{1}\right)$ and $y \in \operatorname{span}\left(S_{2}\right)$. We can write $x=\sum_{i=1}^{m} a_{i} v_{i}$, for some scalars $a_{i}, i=1, \cdots, m$ and $v_{i} \in S_{1}, i=1, \cdots, m$ and $y=\sum_{j=1}^{n} b_{j} w_{j}$, for some scalars $b_{j}, j=1, \cdots, n$ and $w_{i} \in S_{2}, j=1, \cdots, n$. Then we can see that $v=x+y=\sum_{i=1}^{m} a_{i} v_{i}+\sum_{j=1}^{n} b_{j} w_{j}$ is in $\operatorname{span}\left(S_{1} \cup S_{2}\right)$, since $v_{i}, i=$ $1, \cdots, m, w_{j}, j=1, \cdots, n$ are in $S_{1} \cup S_{2}$. Hence $\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right) \subseteq \operatorname{span}\left(S_{1} \cup S_{2}\right)$. Therefore $\operatorname{span}\left(S_{1} \cup S_{2}\right)=\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)$.

Problem 4: Prove that a set S is linear dependent if and only if $S=\{0\}$ or there exist distinct vectors $v, u_{1}, u_{2}, \cdots, u_{n}$ in S such that v is a linear combination of $u_{1}, u_{2}, \cdots, u_{n}$. (9 points)

Proof. (\Rightarrow) If S is linearly dependent and $S \neq\{0\}$, then there exist distinct vectors $u_{0}, u_{1}, \cdots, u_{n} \in S$ such that

$$
a_{0} u_{0}+a_{1} u_{1}+\cdots+a_{n} u_{n}=0
$$

with at least one of the scalars $a_{0}, a_{1}, \cdots, a_{n}$ is not zero, say $a_{0} \neq 0$.
Then we have

$$
u_{0}=\left(-\frac{a_{1}}{a_{0}}\right) u_{1}+\left(-\frac{a_{2}}{a_{0}}\right) u_{2}+\cdots+\left(-\frac{a_{n}}{a_{0}}\right) u_{n} .
$$

Hence $v=u_{0}$ is a linear combination of $u_{1}, u_{2}, \cdots, u_{n}$.
(\Leftarrow) If $S=\{0\}$, then it's clear that S is linearly dependent.
Assume that there exist distinct vectors $v, u_{1}, u_{2}, \cdots, u_{n} \in S$ such that v is a linear combination of $u_{1}, u_{2}, \cdots, u_{n}$, say

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots a_{n} u_{n},
$$

for some scalars $a_{1}, a_{2}, \cdots, a_{n}$.
Then we have

$$
0=(-1) v+a_{1} u_{1}+a_{2} u_{2}+\cdots a_{n} u_{n}
$$

Hence S is linearly dependent.

Problem 5: Prove that if W_{1} is any subspace of a finite-dimensional vector space V, then there exists a subspace W_{2} of V such that $V=W_{1} \oplus W_{2}$. (9 points)

Proof. Let $\beta=\left\{u_{1}, \cdots, u_{n}\right\}$ be a basis for W_{1}. Since W_{1} is a subspace of V. By Replacement Theorem, we can extend β to a basis for V, say $\alpha=\left\{u_{1}, \cdots, u_{n}, u_{n+1}, \cdots, u_{m}\right\}$. Let $W_{2}=\operatorname{span}\left(\left\{u_{n+1}, \cdots, u_{m}\right\}\right)$.
Claim that $V=W_{1} \oplus W_{2}$.

1. $V=W_{1}+W_{2}$.

If $v \in V$, then

$$
v=\sum_{i=1}^{m} a_{i} u_{i}=\sum_{i=1}^{n} a_{i} u_{i}+\sum_{i=n+1}^{m} a_{i} u_{i} \in W_{1}+W_{2}, \quad \text { for some scalars } a_{i}, i=1, \cdots, m
$$

This implies that $V \subseteq W_{1}+W_{2}$. But by the definition of $W_{1}+W_{2}$, we also know that $W_{1}+W_{2} \subseteq V$. Hence $V=W_{1}+W_{2}$.
2. $W_{1} \cap W_{2}=\{0\}$.

Let $u \in W_{1} \cap W_{2}$. Then $u=\sum_{i=1}^{n} b_{i} u_{i}=\sum_{i=n+1}^{m} c_{i} u_{i}$, for some scalars $b_{1}, \cdots, b_{n}, c_{n+1}, \cdots, c_{m}$. Then we have

$$
\sum_{i=1}^{n} b_{i} u_{i}+\sum_{i=n+1}^{m}\left(-c_{i}\right) u_{i}=0
$$

But α is linearly independent, since α is a basis. Hence $b_{1}=\cdots=b_{n}=c_{n+1}=\cdots=c_{m}=$ 0 . This implies that $u=0$. That is $W_{1} \cap W_{2}=\{0\}$. By 1 and 2, we have $V=W_{1} \oplus W_{2}$. We are done!

Problem 6: Prove that if W_{1} and W_{2} are finite-dimensional subspaces of a vector space V, then the subspace $W_{1}+W_{2}$ is finite-dimensional, and $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+$ $\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .(9$ points $)$
(Hint: Start with a basis $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ for $W_{1} \cap W_{2}$ and extend this set to a basis $\left\{u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{m}\right\}$ for W_{1} and to a basis $\left\{u_{1}, u_{2}, \cdots, u_{k}, w_{1}, w_{2}, \cdots, w_{p}\right\}$ for W_{2}.)

Proof. $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim}(V)$
$\Rightarrow W_{1} \cap W_{2}$ has a finite basis $\beta=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$.
We can extend β to a basis $\beta_{1}=\left\{u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{m}\right\}$ for W_{1} and to a basis $\beta_{2}=\left\{u_{1}, u_{2}, \cdots, u_{k}, k_{1}, k_{2}, \cdots, k_{p}\right\}$ for W_{2}.
Let $\alpha=\left\{u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{m}, w_{1}, w_{2}, \cdots, w_{p}\right\}$.
We claim that α is a basis for $W_{1}+W_{2}$.

To prove the claim, we need to check that

1. α is linearly independent.

Let $a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} v_{1}+\cdots+b_{m} v_{m}+c_{1} w_{1}+\cdots+c_{p} w_{p}=0$, for some scalars $a_{1}, \cdots, a_{k}, b_{1}, \cdots, b_{m}, c_{1}, \cdots, c_{p}$.
Then $\left(-b_{1}\right) v_{1}+\cdots+\left(-b_{m}\right) v_{m}=a_{1} u_{1}+\cdots+a_{k} u_{k}+c_{1} w_{1}+\cdots+c_{p} w_{p} \in W_{1} \cap W_{2}$.
Since β is a basis for $W_{1} \cap W_{2}$, we have $\left(-b_{1}\right) v_{1}+\cdots+\left(-b_{m}\right) v_{m}=d_{1} u_{1}+\cdots+d_{k} u_{k}$ for some scalars d_{1}, \cdots, d_{k}.
$\Rightarrow d_{1} u_{1}+\cdots+d_{k} u_{k}+b_{1} v_{1}+\cdots+b_{m} v_{m}=0$
$\Rightarrow d_{1}=\cdots=d_{k}=b_{1}=\cdots=b_{m}=0$, since β_{1} is a basis for W_{1}.
$\Rightarrow a_{1} u_{1}+\cdots+a_{k} u_{k}+c_{1} w_{1}+\cdots+c_{p} w_{p}=0$
$\Rightarrow a_{1}=\cdots=a_{k}=c_{1}=\cdots=c_{p}=0$, since β_{2} is a basis for W_{2}.
Hence α is linearly independent.
2. $W_{1}+W_{2}=\operatorname{span}(\alpha)$.

Let $u=v+w \in W_{1}+W_{2}$, where $v \in W_{1}$ and $w \in W_{2}$, be any vector in $W_{1}+W_{2}$.
Since β_{1} is a basis for W_{1} and β_{2} is a basis for W_{2}, we can find some scalars $x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{m}, z_{1}, \cdots, z_{k}$, such that

$$
\begin{aligned}
u & =\left(x_{1} u_{1}+\cdots+x_{k} u_{k}+y_{1} v_{1}+\cdots y_{m} v_{m}\right)+\left(z_{1} u_{1}+\cdots+z_{k} u_{k}+t_{1} w_{1}+\cdots+t_{p} w_{p}\right) \\
& =\left(\left(x_{1}+z_{1}\right) u_{1}+\cdots+\left(x_{k}+z_{k}\right) u_{k}+y_{1} v_{1}+\cdots y_{m} v_{m}+t_{1} w_{1}+\cdots+t_{p} w_{p}\right)
\end{aligned}
$$

That is, $W_{1}+W_{2} \subseteq \operatorname{span}(\alpha)$.
It is easy to see that $\operatorname{span}(\alpha) \subseteq W_{1}+W_{2}$.
Hence $W_{1}+W_{2}=\operatorname{span}(\alpha)$.
Therefore, α is a basis for $W_{1}+W_{2}$.

Finally, we have
$\operatorname{dim}\left(W_{1}+W_{2}\right)=k+m+p=(k+m)+(k+p)-k=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

Bonus Problem 7: Prove that the intersection of three 6 -dimensional subspaces in \mathbb{R}^{8} is not the zero vector space $\{0\}$. (5 points)

Proof. Let U, V and W be three 6 -dimensional subspaces of \mathbb{R}^{8}.
Then $U+V$ is a subspace of \mathbb{R}^{8} and $\operatorname{dim}(U+V) \leq 8$.

By Problem 6, we have

$$
\operatorname{dim}(U \cap V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U+V) \geq 6+6-8=4
$$

Similarly, we have $\operatorname{dim}(U \cap W) \geq 4$.
Since $U \cap V \subseteq U$ and $U \cap W \subseteq U, U \cap V$ and $U \cap W$ are subspaces of U. This implies that $(U \cap V)+(U \cap W)$ is a subspace of U.
Hence, $\operatorname{dim}((U \cap V)+(U \cap W)) \leq \operatorname{dim}(U)=6$.
By Problem 6 again, we have

$$
\begin{aligned}
\operatorname{dim}(U \cap V \cap W) & =\operatorname{dim}((U \cap V) \cap(U \cap W)) \\
& =\operatorname{dim}(U \cap V)+\operatorname{dim}(U \cap W)-\operatorname{dim}((U \cap V)+(U \cap W)) \\
& \geq 4+4-6=2
\end{aligned}
$$

Therefore, the intersection of three 6 -dimensional subspaces in \mathbb{R}^{8} has at least dimension two and can not be the zero vector space $\{0\}$.

