Solution to Midterm 1

Problem 1: Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. Define addition of elements of V coordinatewise, and for (a_1, a_2) in V and $c \in \mathbb{R}$, define

$$c(a_1, a_2) = \begin{cases} (0,0) & \text{if } c=0\\ (ca_1, \frac{a_2}{c}) & \text{if } c\neq 0. \end{cases}$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer. (5 points)

Solution. No! If $c, d \in \mathbb{R}, c + d \neq 0, c \neq 0, d \neq 0$, then

$$(c+d)(a_1, a_2) = ((c+d)a_1, \frac{a_2}{c+d})$$

usually is not equal to

LINEAR ALGEBRA

$$c(a_1, a_2) + d(a_1, a_2) = (ca_1 + da_1, \frac{a_1}{c} + \frac{a_2}{d}).$$

(VS8) does not hold.

Problem 2: Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. (9 points)

Proof. (\Leftarrow) that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then $W_1 \cup W_2 = W_1$ or W_2 . Since W_1 and W_2 are subspaces V, we have $W_1 \cup W_2$ is also a subspace of V

 $\begin{array}{l} (\Rightarrow) \text{ Suppose that } W_1 \cup W_2 \text{ is a subspace of } V. \\ \text{Also suppose that } W_1 \not\subseteq W_2 \text{ and } W_2 \not\subseteq W_1, \text{ then there exist } u, v \in V \text{ such that } u \in W_1 \backslash W_2, v \in W_2 \backslash W_1. \\ \Rightarrow u, v \in W_1 \cup W_2 \Rightarrow u + v \in W_1 \cup W_2. \\ \text{If } u + v \in W_1, \text{ then } (-u) + (u + v) \in W_1 \Rightarrow v \in W_1 \rightarrow \leftarrow \\ \text{If } u + v \in W_2, \text{ then } (u + v) + (-v) \in W_2 \Rightarrow u \in W_2 \rightarrow \leftarrow \\ \text{Hence } W_1 \subseteq W_2 \text{ or } W_2 \subset W_1. \end{array}$

Problem 3: Show that if S_1 and S_2 are arbitrary subsets of a vector space V, then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$. (9 points)

Proof. Let $u \in \operatorname{span}(S_1 \cup S_2)$, then $u = \sum_{i=1}^m a_i v_i + \sum_{j=1}^n b_j w_j$, for some scalars $a_i, i = 1, \cdots, m, b_j, j = 1, \cdots, n$, where $v_i, i = 1, \cdots, m$, are in S_1 and $w_j, j = 1, \cdots, n$, are in S_2 . Since $\sum_{i=1}^m a_i v_i$ is in $\operatorname{span}(S_1)$ and $\sum_{j=1}^n b_j w_i$ is in $\operatorname{span}(S_2)$, we have $u \in \operatorname{span}(S_1) + \operatorname{span}(S_2)$. Hence $\operatorname{span}(S_1 \cup S_2) \subseteq \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

Now let $v = x + y \in \operatorname{span}(S_1) + \operatorname{span}(S_2)$, where $x \in \operatorname{span}(S_1)$ and $y \in \operatorname{span}(S_2)$. We can write $x = \sum_{i=1}^{m} a_i v_i$, for some scalars $a_i, i = 1, \cdots, m$ and $v_i \in S_1, i = 1, \cdots, m$ and $y = \sum_{j=1}^{n} b_j w_j$, for some scalars $b_j, j = 1, \cdots, n$ and $w_i \in S_2, j = 1, \cdots, n$. Then we can see that $v = x + y = \sum_{i=1}^{m} a_i v_i + \sum_{j=1}^{n} b_j w_j$ is in $\operatorname{span}(S_1 \cup S_2)$, since $v_i, i = 1, \cdots, m, w_j, j = 1, \cdots, n$ are in $S_1 \cup S_2$. Hence $\operatorname{span}(S_1) + \operatorname{span}(S_2) \subseteq \operatorname{span}(S_1 \cup S_2)$. Therefore $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

Problem 4: Prove that a set S is linear dependent if and only if $S = \{0\}$ or there exist distinct vectors v, u_1, u_2, \dots, u_n in S such that v is a linear combination of u_1, u_2, \dots, u_n . (9 points)

Proof. (\Rightarrow) If S is linearly dependent and $S \neq \{0\}$, then there exist distinct vectors $u_0, u_1, \dots, u_n \in S$ such that

$$a_0u_0 + a_1u_1 + \dots + a_nu_n = 0$$

with at least one of the scalars a_0, a_1, \dots, a_n is not zero, say $a_0 \neq 0$. Then we have

$$u_0 = \left(-\frac{a_1}{a_0}\right)u_1 + \left(-\frac{a_2}{a_0}\right)u_2 + \dots + \left(-\frac{a_n}{a_0}\right)u_n.$$

Hence $v = u_0$ is a linear combination of u_1, u_2, \cdots, u_n .

(\Leftarrow) If $S = \{0\}$, then it's clear that S is linearly dependent.

Assume that there exist distinct vectors $v, u_1, u_2, \dots, u_n \in S$ such that v is a linear combination of u_1, u_2, \dots, u_n , say

$$v = a_1u_1 + a_2u_2 + \cdots + a_nu_n,$$

for some scalars a_1, a_2, \cdots, a_n . Then we have

$$0 = (-1)v + a_1u_1 + a_2u_2 + \cdots + a_nu_n.$$

Hence S is linearly dependent.

Problem 5: Prove that if W_1 is any subspace of a finite-dimensional vector space V, then there exists a subspace W_2 of V such that $V = W_1 \oplus W_2$. (9 points)

Proof. Let $\beta = \{u_1, \dots, u_n\}$ be a basis for W_1 . Since W_1 is a subspace of V. By Replacement Theorem, we can extend β to a basis for V, say $\alpha = \{u_1, \dots, u_n, u_{n+1}, \dots, u_m\}$. Let $W_2 = \operatorname{span}(\{u_{n+1}, \dots, u_m\})$. Claim that $V = W_1 \oplus W_2$. 1. $\underbrace{V = W_1 + W_2}_{V \in V}$, then $v = \sum_{i=1}^{m} a_i u_i = \sum_{i=1}^{n} a_i u_i + \sum_{i=1}^{m} a_i u_i \in W_1 + W_2$, for some scalars $a_i, i = 1, \dots, m$.

$$v = \sum_{i=1}^{n} a_i u_i = \sum_{i=1}^{n} a_i u_i + \sum_{i=n+1}^{n} a_i u_i \in W_1 + W_2, \text{ for some scalars } a_i, i = 1, \cdots, m.$$

This implies that $V \subseteq W_1 + W_2$. But by the definition of $W_1 + W_2$, we also know that $W_1 + W_2 \subseteq V$. Hence $V = W_1 + W_2$. 2. $W_1 \cap W_2 = \{0\}$.

Let $u \in W_1 \cap W_2$. Then $u = \sum_{i=1}^n b_i u_i = \sum_{i=n+1}^m c_i u_i$, for some scalars $b_1, \dots, b_n, c_{n+1}, \dots, c_m$. Then we have

$$\sum_{i=1}^{n} b_i u_i + \sum_{i=n+1}^{m} (-c_i) u_i = 0.$$

But α is linearly independent, since α is a basis. Hence $b_1 = \cdots = b_n = c_{n+1} = \cdots = c_m = 0$. This implies that u = 0. That is $W_1 \cap W_2 = \{0\}$. By 1 and 2, we have $V = W_1 \oplus W_2$. We are done!

Problem 6: Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional, and $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$. (9 points)

(Hint: Start with a basis $\{u_1, u_2, \dots, u_k\}$ for $W_1 \cap W_2$ and extend this set to a basis $\{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_m\}$ for W_1 and to a basis $\{u_1, u_2, \dots, u_k, w_1, w_2, \dots, w_p\}$ for W_2 .)

Proof. dim $(W_1 \cap W_2) \leq \text{dim}(V)$ $\Rightarrow W_1 \cap W_2$ has a finite basis $\beta = \{u_1, u_2, \cdots, u_k\}$. We can extend β to a basis $\beta_1 = \{u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_m\}$ for W_1 and to a basis $\beta_2 = \{u_1, u_2, \cdots, u_k, k_1, k_2, \cdots, k_p\}$ for W_2 . Let $\alpha = \{u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_m, w_1, w_2, \cdots, w_p\}$. We claim that α is a basis for $W_1 + W_2$. To prove the claim, we need to check that

1. α is linearly independent.

Let $a_1u_1 + \dots + a_ku_k + b_1v_1 + \dots + b_mv_m + c_1w_1 + \dots + c_pw_p = 0$, for some scalars $a_1, \dots, a_k, b_1, \dots, b_m, c_1, \dots, c_p$. Then $(-b_1)v_1 + \dots + (-b_m)v_m = a_1u_1 + \dots + a_ku_k + c_1w_1 + \dots + c_pw_p \in W_1 \cap W_2$. Since β is a basis for $W_1 \cap W_2$, we have $(-b_1)v_1 + \dots + (-b_m)v_m = d_1u_1 + \dots + d_ku_k$ for some scalars d_1, \dots, d_k . $\Rightarrow d_1u_1 + \dots + d_ku_k + b_1v_1 + \dots + b_mv_m = 0$ $\Rightarrow d_1 = \dots = d_k = b_1 = \dots = b_m = 0$, since β_1 is a basis for W_1 . $\Rightarrow a_1u_1 + \dots + a_ku_k + c_1w_1 + \dots + c_pw_p = 0$ $\Rightarrow a_1 = \dots = a_k = c_1 = \dots = c_p = 0$, since β_2 is a basis for W_2 . Hence α is linearly independent.

2. $W_1 + W_2 = \text{span}(\alpha)$.

Let $u = v + w \in W_1 + W_2$, where $v \in W_1$ and $w \in W_2$, be any vector in $W_1 + W_2$. Since β_1 is a basis for W_1 and β_2 is a basis for W_2 , we can find some scalars $x_1, \dots, x_k, y_1, \dots, y_m, z_1, \dots, z_k$, such that

$$u = (x_1u_1 + \dots + x_ku_k + y_1v_1 + \dots + y_mv_m) + (z_1u_1 + \dots + z_ku_k + t_1w_1 + \dots + t_pw_p)$$

= $((x_1 + z_1)u_1 + \dots + (x_k + z_k)u_k + y_1v_1 + \dots + y_mv_m + t_1w_1 + \dots + t_pw_p)$

That is, $W_1 + W_2 \subseteq \operatorname{span}(\alpha)$. It is easy to see that $\operatorname{span}(\alpha) \subseteq W_1 + W_2$. Hence $W_1 + W_2 = \operatorname{span}(\alpha)$. Therefore, α is a basis for $W_1 + W_2$.

Finally, we have

$$\dim(W_1 + W_2) = k + m + p = (k + m) + (k + p) - k = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

Bonus Problem 7: Prove that the intersection of three 6-dimensional subspaces in \mathbb{R}^8 is not the zero vector space $\{0\}$. (5 points)

Proof. Let U, V and W be three 6-dimensional subspaces of \mathbb{R}^8 . Then U + V is a subspace of \mathbb{R}^8 and $\dim(U + V) \leq 8$. By Problem 6, we have

$$\dim(U \cap V) = \dim(U) + \dim(V) - \dim(U + V) \ge 6 + 6 - 8 = 4$$

Similarly, we have $\dim(U \cap W) \ge 4$.

Since $U \cap V \subseteq U$ and $U \cap W \subseteq U$, $U \cap V$ and $U \cap W$ are subspaces of U. This implies that $(U \cap V) + (U \cap W)$ is a subspace of U. Hence, dim $((U \cap V) + (U \cap W)) \leq \dim(U) = 6$. By Problem 6 again, we have

$$\dim(U \cap V \cap W) = \dim \left((U \cap V) \cap (U \cap W) \right)$$

=
$$\dim(U \cap V) + \dim(U \cap W) - \dim \left((U \cap V) + (U \cap W) \right)$$

$$\geq 4 + 4 - 6 = 2.$$

Therefore, the intersection of three 6-dimensional subspaces in \mathbb{R}^8 has at least dimension two and can not be the zero vector space $\{0\}$.