
Linear Algebra Solutions

6.2.6. By Theorem 6.6, x can be uniquely written as x = u+v, where u ∈ W and v ∈ W⊥.

Since x /∈ W , we have v 6= 0. Let y = v, then

< x, y >=< u+ v, v >=< u, v > + < v, v >= ||v||2 > 0.

�

6.2.7. ⇒ Since β is a basis for W . If v ∈ β, then v ∈ W . So for z ∈ W⊥, we have

< z, v >= 0, for all v ∈ β.
⇐ Since β is a basis for W . For all u ∈ W , u =

∑n
i=1 aivi, where a1, · · · , an are scalars

and v1, · · · , vn ∈ β. Hence, by assumption, we have

< z,
n∑
i=1

aivi >=
n∑
i=1

ai < z, vi >= 0.

this implies that z ∈ W⊥. �

6.2.8. We proceed by induction on n. For n = 1, the statement v1 = w1 holds by the

Gram-Schmidt process. Suppose that the statement holds for n = k − 1. Now consider

the orthogonal set of nonzero vectors {w1, · · · , wn}. By induction hypothesis, we know

that v1 = w1, · · · , vk−1 = wk−1. Then the Gram-Schmidt process says that

vk = wk −
k−1∑
i=1

< wk, vi >

||vi||2
vi = wk − 0 = wk.

This completes the proof. �

6.2.11. ⇒ For i, j = 1, 2, · · · , n,

(AA∗)ij =< vi, vj >

where vi is the i-th row vector of A. If AA∗ = I, then

< vi, vj >= δij, i, j = 1, · · · , n.

Hence {v1, · · · , vn} forms an orthonormal basis for Cn.

⇐ For i = 1, · · · , n, let vi be the i-th row vector of A such that {v1, · · · , vn} forms an

orthonormal basis for Cn. Then (AA∗)ij =< vi, vj >= δij for i, j = 1, · · · , n. This implies

that AA∗ = I. �

6.2.13(a). If v ∈ S⊥, then v is orthogonal to all vectors in S. Since S0 ⊆ S, we have v is

orthogonal to all vectors in S0. Hence v ∈ S⊥0 . �

6.2.13(b). If v ∈ S, then v is orthogonal to all vectors in S⊥. This means that v ∈ (S⊥)⊥,

i.e. S ⊆ (S⊥)⊥. Since we know that (S⊥)⊥ is a subspace, we have span(S) ⊆ (S⊥)⊥. �
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6.2.13(c). By (b), we have W ⊆ (W⊥)⊥. By 6.2.6 we know that, if x /∈ W , then there

exists y ∈ W⊥ such that < x, y > 6= 0, i.e. x /∈ (W⊥)⊥. This implies that if x ∈ (W⊥)⊥,

then x ∈ W and, hence, (W⊥)⊥ ⊆ W. Therefore W = (W⊥)⊥. �

6.2.13(d). By Theorem 6.6, we know that V = W +W⊥. If v ∈ W ∩W⊥, then < v, v >=

||v||2 = 0. Hence v = 0. By combining these facts, we conclude that V = W ⊕W⊥. �

6.2.15(a). By Theorem 6.5, we have

x =
n∑
i=1

< x, vi > vi, y =
n∑
j=1

< y, vj > vj.

Hence we have

< x, y >= 〈
n∑
i=1

< x, vi > vi,
n∑
j=1

< y, vj > vj〉

=
n∑
i=1

n∑
j=1

< x, vi > < y, vj > < vi, vj >

=
n∑
i=1

< x, vi > < y, vi >.

�

6.2.15(b). Let β = {v1, v2, · · · , vn} be an orthonormal basis for V . Then

φβ(x) = [x]β =


< x, v1 >

< x, v2 >
...

< x, vn >

 , φβ(y) = [y]β =


< y, v1 >

< y, v2 >
...

< y, vn >

 ,

where φβ : V → F n is the standard representation of V with respect to the basis β defined

by φβ(x) = [x]β. By combing these equalities with (a), we conclude that 〈φβ(x), φβ(y)〉′ =
〈[x]β, [y]β〉′ =< x, y > . �

6.2.18. Let f ∈ Wo be an odd function, then, for any even function g ∈ We, we have

fg(x) = f(x)g(x) = −f(−x)g(−x) = −fg(−x),

i.e. fg is an odd function. Since fg is an odd function, then

< f, g >=

∫ 1

−1
f(t)g(t)dt = 0.

Hence Wo ⊆ W⊥
e .



Let f be an arbitrary function, then f can be written as f = g + h, where

g(x) =
1

2
(f(x) + f(−x)) and h(x) =

1

2
(f(x)− f(−x)).

It is easy to see that g(x) = g(−x) is an even function and −h(x) = h(−x) is an odd

function. If f ∈ W⊥
e , then we have

0 =< f, g >=< g + h, g >=< g, g > + < h, g >= ||g||2,

since < h, g >= 0. So g = 0 and f = h ∈ Wo is an odd function. Hence W⊥
e ⊆ Wo.

Therefore W⊥
e = Wo. �


