6.2.6. By Theorem $6.6, x$ can be uniquely written as $x=u+v$, where $u \in W$ and $v \in W^{\perp}$. Since $x \notin W$, we have $v \neq 0$. Let $y=v$, then

$$
<x, y>=<u+v, v>=<u, v>+<v, v>=\|v\|^{2}>0 .
$$

6.2.7. \Rightarrow Since β is a basis for W. If $v \in \beta$, then $v \in W$. So for $z \in W^{\perp}$, we have $<z, v\rangle=0$, for all $v \in \beta$.
\Leftarrow Since β is a basis for W. For all $u \in W, u=\sum_{i=1}^{n} a_{i} v_{i}$, where a_{1}, \cdots, a_{n} are scalars and $v_{1}, \cdots, v_{n} \in \beta$. Hence, by assumption, we have

$$
<z, \sum_{i=1}^{n} a_{i} v_{i}>=\sum_{i=1}^{n} \overline{a_{i}}<z, v_{i}>=0 .
$$

this implies that $z \in W^{\perp}$.
6.2.8. We proceed by induction on n. For $n=1$, the statement $v_{1}=w_{1}$ holds by the Gram-Schmidt process. Suppose that the statement holds for $n=k-1$. Now consider the orthogonal set of nonzero vectors $\left\{w_{1}, \cdots, w_{n}\right\}$. By induction hypothesis, we know that $v_{1}=w_{1}, \cdots, v_{k-1}=w_{k-1}$. Then the Gram-Schmidt process says that

$$
v_{k}=w_{k}-\sum_{i=1}^{k-1} \frac{<w_{k}, v_{i}>}{\left\|v_{i}\right\|^{2}} v_{i}=w_{k}-0=w_{k} .
$$

This completes the proof.
6.2.11. \Rightarrow For $i, j=1,2, \cdots, n$,

$$
\left(A A^{*}\right)_{i j}=<v_{i}, v_{j}>
$$

where v_{i} is the i-th row vector of A. If $A A^{*}=I$, then

$$
<v_{i}, v_{j}>=\delta_{i j}, \quad i, j=1, \cdots, n
$$

Hence $\left\{v_{1}, \cdots, v_{n}\right\}$ forms an orthonormal basis for \mathcal{C}^{n}.
\Leftarrow For $i=1, \cdots, n$, let v_{i} be the i-th row vector of A such that $\left\{v_{1}, \cdots, v_{n}\right\}$ forms an orthonormal basis for \mathcal{C}^{n}. Then $\left(A A^{*}\right)_{i j}=<v_{i}, v_{j}>=\delta_{i j}$ for $i, j=1, \cdots, n$. This implies that $A A^{*}=I$.
6.2.13(a). If $v \in S^{\perp}$, then v is orthogonal to all vectors in S. Since $S_{0} \subseteq S$, we have v is orthogonal to all vectors in S_{0}. Hence $v \in S_{0}^{\perp}$.
6.2.13(b). If $v \in S$, then v is orthogonal to all vectors in S^{\perp}. This means that $v \in\left(S^{\perp}\right)^{\perp}$, i.e. $S \subseteq\left(S^{\perp}\right)^{\perp}$. Since we know that $\left(S^{\perp}\right)^{\perp}$ is a subspace, we have $\operatorname{span}(S) \subseteq\left(S^{\perp}\right)^{\perp}$.
6.2.13(c). By (b), we have $W \subseteq\left(W^{\perp}\right)^{\perp}$. By 6.2 .6 we know that, if $x \notin W$, then there exists $y \in W^{\perp}$ such that $<x, y>\neq 0$, i.e. $x \notin\left(W^{\perp}\right)^{\perp}$. This implies that if $x \in\left(W^{\perp}\right)^{\perp}$, then $x \in W$ and, hence, $\left(W^{\perp}\right)^{\perp} \subseteq W$. Therefore $W=\left(W^{\perp}\right)^{\perp}$.
6.2.13(d). By Theorem 6.6, we know that $V=W+W^{\perp}$. If $v \in W \cap W^{\perp}$, then $<v, v>=$ $\|v\|^{2}=0$. Hence $v=0$. By combining these facts, we conclude that $V=W \oplus W^{\perp}$.
6.2.15(a). By Theorem 6.5, we have

$$
x=\sum_{i=1}^{n}<x, v_{i}>v_{i}, \quad y=\sum_{j=1}^{n}<y, v_{j}>v_{j} .
$$

Hence we have

$$
\begin{array}{r}
<x, y>=\left\langle\sum_{i=1}^{n}<x, v_{i}>v_{i}, \sum_{j=1}^{n}<y, v_{j}>v_{j}\right\rangle \\
=\sum_{i=1}^{n} \sum_{j=1}^{n}<x, v_{i}>\overline{<y, v_{j}>}<v_{i}, v_{j}> \\
=\sum_{i=1}^{n}<x, v_{i}>\overline{<y, v_{i}>.}
\end{array}
$$

6.2.15(b). Let $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be an orthonormal basis for V. Then

$$
\phi_{\beta}(x)=[x]_{\beta}=\left(\begin{array}{c}
<x, v_{1}> \\
<x, v_{2}> \\
\vdots \\
<x, v_{n}>
\end{array}\right), \quad \phi_{\beta}(y)=[y]_{\beta}=\left(\begin{array}{c}
<y, v_{1}> \\
<y, v_{2}> \\
\vdots \\
<y, v_{n}>
\end{array}\right)
$$

where $\phi_{\beta}: V \rightarrow F^{n}$ is the standard representation of V with respect to the basis β defined by $\phi_{\beta}(x)=[x]_{\beta}$. By combing these equalities with (a), we conclude that $\left\langle\phi_{\beta}(x), \phi_{\beta}(y)\right\rangle^{\prime}=$ $\left\langle[x]_{\beta},[y]_{\beta}\right\rangle^{\prime}=<x, y>$.
6.2.18. Let $f \in W_{o}$ be an odd function, then, for any even function $g \in W_{e}$, we have

$$
f g(x)=f(x) g(x)=-f(-x) g(-x)=-f g(-x)
$$

i.e. $f g$ is an odd function. Since $f g$ is an odd function, then

$$
<f, g>=\int_{-1}^{1} f(t) g(t) d t=0
$$

Hence $W_{o} \subseteq W_{e}^{\perp}$.

Let f be an arbitrary function, then f can be written as $f=g+h$, where

$$
g(x)=\frac{1}{2}(f(x)+f(-x)) \quad \text { and } \quad h(x)=\frac{1}{2}(f(x)-f(-x)) .
$$

It is easy to see that $g(x)=g(-x)$ is an even function and $-h(x)=h(-x)$ is an odd function. If $f \in W_{e}^{\perp}$, then we have

$$
0=<f, g>=<g+h, g>=<g, g>+<h, g>=\|g\|^{2}
$$

since $<h, g>=0$. So $g=0$ and $f=h \in W_{o}$ is an odd function. Hence $W_{e}^{\perp} \subseteq W_{o}$. Therefore $W_{e}^{\perp}=W_{o}$.

