LINEAR ALGEBRA

Solutions

6.2.6. By Theorem 6.6, x can be uniquely written as x = u + v, where $u \in W$ and $v \in W^{\perp}$. Since $x \notin W$, we have $v \neq 0$. Let y = v, then

$$\langle x, y \rangle = \langle u + v, v \rangle = \langle u, v \rangle + \langle v, v \rangle = ||v||^2 > 0.$$

 $6.2.7. \Rightarrow$ Since β is a basis for W. If $v \in \beta$, then $v \in W$. So for $z \in W^{\perp}$, we have $\langle z, v \rangle = 0$, for all $v \in \beta$.

 \Leftarrow Since β is a basis for W. For all $u \in W$, $u = \sum_{i=1}^{n} a_i v_i$, where a_1, \dots, a_n are scalars and $v_1, \dots, v_n \in \beta$. Hence, by assumption, we have

$$< z, \sum_{i=1}^{n} a_i v_i > = \sum_{i=1}^{n} \overline{a_i} < z, v_i > = 0.$$

this implies that $z \in W^{\perp}$.

6.2.8. We proceed by induction on n. For n = 1, the statement $v_1 = w_1$ holds by the Gram-Schmidt process. Suppose that the statement holds for n = k - 1. Now consider the orthogonal set of nonzero vectors $\{w_1, \dots, w_n\}$. By induction hypothesis, we know that $v_1 = w_1, \dots, v_{k-1} = w_{k-1}$. Then the Gram-Schmidt process says that

$$v_k = w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle}{||v_i||^2} v_i = w_k - 0 = w_k.$$

This completes the proof.

 $6.2.11. \Rightarrow For \ i, j = 1, 2, \cdots, n,$

 $(AA^*)_{ij} = \langle v_i, v_j \rangle$

where v_i is the *i*-th row vector of A. If $AA^* = I$, then

$$\langle v_i, v_j \rangle = \delta_{ij}, \qquad i, j = 1, \cdots, n.$$

Hence $\{v_1, \cdots, v_n\}$ forms an orthonormal basis for \mathcal{C}^n .

 \Leftarrow For $i = 1, \dots, n$, let v_i be the *i*-th row vector of A such that $\{v_1, \dots, v_n\}$ forms an orthonormal basis for \mathcal{C}^n . Then $(AA^*)_{ij} = \langle v_i, v_j \rangle = \delta_{ij}$ for $i, j = 1, \dots, n$. This implies that $AA^* = I$.

6.2.13(a). If $v \in S^{\perp}$, then v is orthogonal to all vectors in S. Since $S_0 \subseteq S$, we have v is orthogonal to all vectors in S_0 . Hence $v \in S_0^{\perp}$.

6.2.13(b). If $v \in S$, then v is orthogonal to all vectors in S^{\perp} . This means that $v \in (S^{\perp})^{\perp}$, i.e. $S \subseteq (S^{\perp})^{\perp}$. Since we know that $(S^{\perp})^{\perp}$ is a subspace, we have $\operatorname{span}(S) \subseteq (S^{\perp})^{\perp}$. \Box

6.2.13(c). By (b), we have $W \subseteq (W^{\perp})^{\perp}$. By 6.2.6 we know that, if $x \notin W$, then there exists $y \in W^{\perp}$ such that $\langle x, y \rangle \neq 0$, i.e. $x \notin (W^{\perp})^{\perp}$. This implies that if $x \in (W^{\perp})^{\perp}$, then $x \in W$ and, hence, $(W^{\perp})^{\perp} \subseteq W$. Therefore $W = (W^{\perp})^{\perp}$.

6.2.13(d). By Theorem 6.6, we know that $V = W + W^{\perp}$. If $v \in W \cap W^{\perp}$, then $\langle v, v \rangle = ||v||^2 = 0$. Hence v = 0. By combining these facts, we conclude that $V = W \oplus W^{\perp}$. \Box

6.2.15(a). By Theorem 6.5, we have

$$x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i, \qquad y = \sum_{j=1}^{n} \langle y, v_j \rangle v_j.$$

Hence we have

$$\langle x, y \rangle = \langle \sum_{i=1}^{n} \langle x, v_i \rangle v_i, \sum_{j=1}^{n} \langle y, v_j \rangle v_j \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_j \rangle} \langle v_i, v_j \rangle$$
$$= \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

6.2.15(b). Let $\beta = \{v_1, v_2, \cdots, v_n\}$ be an orthonormal basis for V. Then

$$\phi_{\beta}(x) = [x]_{\beta} = \begin{pmatrix} \langle x, v_1 \rangle \\ \langle x, v_2 \rangle \\ \vdots \\ \langle x, v_n \rangle \end{pmatrix}, \qquad \phi_{\beta}(y) = [y]_{\beta} = \begin{pmatrix} \langle y, v_1 \rangle \\ \langle y, v_2 \rangle \\ \vdots \\ \langle y, v_n \rangle \end{pmatrix},$$

where $\phi_{\beta}: V \to F^n$ is the standard representation of V with respect to the basis β defined by $\phi_{\beta}(x) = [x]_{\beta}$. By combining these equalities with (a), we conclude that $\langle \phi_{\beta}(x), \phi_{\beta}(y) \rangle' = \langle [x]_{\beta}, [y]_{\beta} \rangle' = \langle x, y \rangle$.

6.2.18. Let $f \in W_o$ be an odd function, then, for any even function $g \in W_e$, we have

$$fg(x) = f(x)g(x) = -f(-x)g(-x) = -fg(-x),$$

i.e. fg is an odd function. Since fg is an odd function, then

$$\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt = 0.$$

Hence $W_o \subseteq W_e^{\perp}$.

Let f be an arbitrary function, then f can be written as f = g + h, where

$$g(x) = \frac{1}{2}(f(x) + f(-x))$$
 and $h(x) = \frac{1}{2}(f(x) - f(-x)).$

It is easy to see that g(x) = g(-x) is an even function and -h(x) = h(-x) is an odd function. If $f \in W_e^{\perp}$, then we have

$$0 = < f, g > = < g + h, g > = < g, g > + < h, g > = ||g||^2,$$

since $\langle h, g \rangle = 0$. So g = 0 and $f = h \in W_o$ is an odd function. Hence $W_e^{\perp} \subseteq W_o$. Therefore $W_e^{\perp} = W_o$.