NCU PHD PROGRAM ENTRANCE EXAM: ANALYSIS

(May 20, 2011)

Stage Setting: In the following problems, the functions are assumed be real-valued.

- (1) (10%) Let $\{a_n\}$ and $\{b_n\}$ be bounded sequences in \mathbb{R} .
 - (a) Prove that $\liminf a_n + \liminf b_n \leq \liminf (a_n + b_n)$.
 - (b) If $\{a_n\}$ is convergent in \mathbb{R} , prove that $\liminf a_n + \liminf b_n = \liminf (a_n + b_n)$.
- (2) (10%) Let $f(x,y) = \frac{xy}{(x^2+y^2)^2}$ if $(x,y) \neq (0,0)$, and f(0,0) = 0.
 - (a) Is f differentiable at (0,0)? Give your reason.
 - (b) Is f Lebesgue integrable on $[-1,1] \times [-1,1]$? Give your proof.
- (3) (15%) Assume f is Lebesgue integrable on \mathbb{R} .
 - (a) Prove that $g(y) \equiv \int_{-\infty}^{\infty} f(x)e^{-(x^2y^2)}dx$ is a bounded, continuous function on \mathbb{R} .
 - (b) If f is a continuous function on \mathbb{R} and f = 0 almost everywhere with respect to Lebesgue measure, prove that f(x) = 0 for all $x \in \mathbb{R}$.
- (4) (20%) Let f, f_1, f_2, \cdots be Lebesgue integrable functions on \mathbb{R} , and, $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on \mathbb{R} .
 - (a) Prove or disprove that $f_n \to f$ in measure (Lebesgue measure).
 - (b) Prove or disprove that $\int_{\mathbb{R}} f dm = \lim_{n \to \infty} \int_{\mathbb{R}} f_n dm$, where m is the Lebesgue measure.
 - (c) If f_n is absolutely continuous on [0,1] for each $n=1,2,\cdots$. Prove or disprove that f is absolutely continuous on [0,1].
- (5) (15%) Let (X, \mathcal{B}) and (Y, Σ) be two measurable spaces and μ a measure on \mathcal{B} . Assume that $T: X \to Y$ has the property that $T^{-1}(A) \in \mathcal{B}$ for each $A \in \Sigma$. Let ν be a measure on Σ defined by $\nu(A) = \mu(T^{-1}(A))$ for each $A \in \Sigma$.
 - (a) If $f \in L^1(\nu)$, then show that $f \circ T \in L^1(\mu)$ and $\int_Y f d\nu = \int_X f \circ T d\mu$.
 - (b) If μ is finite and ω is a σ -finite measure on Σ such that $\nu \ll \omega$, then show that there exists a function $g \in L^1(\omega)$ such that $\int_X f \circ T d\mu = \int_Y f g d\omega$ holds for each $f \in L^1(\nu)$.
- (6) (15%)
 - (a) Prove or disprove that $L^p([0,1]) \supseteq L^q([0,1])$, where $1 \le p < q < \infty$.
 - (b) Prove or disprove that $\ell^q \supseteq \ell^p$, where $1 \le p < q < \infty$, $\ell^p \equiv \{(x_1, x_2, \cdots) : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$ and $\ell^q \equiv \{(x_1, x_2, \cdots) : \sum_{n=1}^{\infty} |x_n|^q < \infty\}$.
- (7) (15%) Let $\ell^2 = \{(a_1, a_2, \dots) : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$ be the normed space with the norm $\|(a_1, a_2, \dots)\|_2 = (\sum_{n=1}^{\infty} |a_n|^2)^{1/2}$.
 - (a) Let $U = \{(a_1, a_2, \ldots) \in \ell^2 : \|(a_1, a_2, \ldots)\|_2 \leq 1\}$. Determine whether U is compact in $(\ell^2, \|\cdot\|_2)$, prove your answer.
 - (b) Let $A = \{(a_1, a_2, \ldots) \in \ell^2 : |a_n| \leq \frac{1}{n} \text{ for all } n\}$. Determine whether A is compact in $(\ell^2, \|\cdot\|_2)$, prove your answer.