NCU PHD PROGRAM ENTRANCE EXAM: ANALYSIS

(May 18, 2012)

Stage Setting: In the following problems, the functions are assumed be real-valued.

1. (15%) Let f be a Lebesgue integrable function on $(0, \infty)$. Prove that the function

$$g(t) = \int_{(0,\infty)} e^{-tx} f(x) dx, \quad 0 < t < \infty,$$

is bounded, differentiable and $g'(t) = -\int_{(0,\infty)} xe^{-tx} f(x) dx$.

2. (10%) Let f, f_1, f_2, \cdots be measurable functions on a finite measure space (X, \mathfrak{B}, μ) . Prove that $f_n \to f$ in measure if and only if

$$\int_X \frac{|f_n - f|}{1 + |f_n - f|} d\mu \to 0 \text{ as } n \to \infty.$$

3. (10%) Let μ be the Lebesgue measure on [0, 1], ν be the counting measure on [0, 1] and

$$\triangle = \{(x, x) : x \in [0, 1]\}.$$

Determine whether the characteristic function χ_{\triangle} is $\mu \times \nu$ -integrable on $[0,1] \times [0,1]$. Justify your answer.

- 4. (10%) Let (X, \mathcal{B}, μ) be a finite measure space, $f: X \to \mathbb{R}$ be a measurable function and $\alpha \in \mathbb{R}$. If f^n is integrable and $\int_X f^n d\mu = \alpha$ for all $n = 1, 2, \ldots$, prove that $f = \chi_E$ for some measurable subset E of X.
- 5. (15%) Let μ and ν be finite measures on the measurable space (X, \mathcal{B}) with $\mu \ll \nu$ and $\nu \ll \mu$.
 - (a) Let f be a nonnegative measurable function on X. Prove that $\int_X f d\nu = \int_X f \frac{d\nu}{d\mu} d\mu$.
 - (b) Find a relation of $\frac{d\mu}{d\nu}$ and $\frac{d\nu}{d\mu}$. Prove your assertion.
- 6. (10%) If two functions $f, g \in L^3(X, \mathcal{B}, \mu)$ satisfy

$$||f||_3 = ||g||_3 = \int_X f^2 g d\mu = 1,$$

then show that g = |f| almost everywhere holds.

- 7. (10%) Determine whether the set $C[0,1] \equiv \{f:[0,1] \to \mathbb{R}: f \text{ is continuous on } [0,1]\}$ with the metric $d(f,g) \equiv \int_0^1 |f(x)-g(x)| dx$ is a complete metric space. Give your reasons.
- 8. (10%) Is $(l^{\infty}, \|\cdot\|_{\infty})$ separable? Justify your answer. (Recall that a metric space X is separable if X has a countable dense subset, and $l^{\infty} = \{(a_1, a_2, \ldots, a_n, \ldots) : \sup_{n} |a_n| < \infty\}.$)
- 9. (10%) Let $f \in C^{\infty}([0,1])$. Prove that for any $n \in \mathbb{N}$ there exists a sequence of polynomials $\{p_m\}$ such that $\sum_{k=0}^n \|p_m^{(k)} f^{(k)}\|_{\infty} \to 0$ as $m \to \infty$.