國立中央大學九十四學年度數學系博士班招生筆試試題卷

科目:代數

第1頁共1頁

- 1. (25%) Let p, q be prime numbers and let G be a group of order p^2q . Prove or disprove that G is solvable. (Hint: Consider the cases p < q, p = q, p > q.)
- 2. (25%)
 - (a) Determine the ring of algebraic integers in $\mathbb{Q}(\sqrt{-3})$ and show that it is a principal ideal domain.
 - (b) Let R be a principal ideal domain. Show that a finitely generated R-module is free if and only if it is torsion-free.
 - (c) Let R be a principal ideal domain and M a finitely generated R-module. Show that the following sequence is split exact:

$$0 \longrightarrow M_{\rm tor} \longrightarrow M \longrightarrow M/M_{\rm tor} \longrightarrow o$$

where $M_{\rm tor}$ is the torsion submodule of M.

- 3. (25%)
 - (a) Let R be a local ring, m its maximal ideal, k = R/m its residue field. Let M be a finitely generated R-module. Show that $\{x_1, \ldots, x_n\}$ is a minimal generating set of M if and only if the images $\bar{x_1}, \ldots, \bar{x_n}$ in M/mM form a basis for M/mM over k.
 - (b) Let R be a local ring. Show that any finitely generated projective module over R is free.
 - (c) Let R be a commutative ring and M a finitely generated R-module. Assume that $M \otimes_R \kappa(m) = 0$ for every maximal ideal m, where $\kappa(m)$ is the residue field of the local ring R_m . Show that M = 0.
- 4. (10%) Let K be the splitting field of $f(x) = x^5 + 32x^3 + x^2 + 31x + 31$ over the rational numbers \mathbb{Q} . Find the extension degree $[K:\mathbb{Q}]$ and the Galois group of K over \mathbb{Q} .
- 5. (15%) Let K be an infinite Galois extension over k with Galois group G. Prove that G is profinite. (A group is called profinite if it is an inverse limit of finite groups).