國立中央大學九十四學年度數學系博士班招生筆試試題卷

歸爛
/IEI

科目:

第1頁共1頁

NCU PHD PROGRAM ENTRANCE EXAM: ANALYSIS

- 1. Prove that a bounded function $f:[0,1] \to \mathbb{R}$ is Riemann integrable if and only if f is continuous almost everywhere.
- 2. (a) Give the precise definition of Df(p) of a mapping $f: U \to \mathbb{R}^m$, where U is an open subset in \mathbb{R}^n and $p \in U$, and state the inverse function theorem on \mathbb{R}^n .
 - (b) Prove the inverse function theorem in the following special situation: Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be C^1 , f(0) = 0 and $Df(0) = I_{n \times n}$. For any $y \in \bar{B}_r(0)$ we define $g_y(x) = y + (x f(x))$. Show that if r is chosen small enough than g_y maps $\bar{B}_{2r}(0)$ into $\bar{B}_{2r}(0)$ and there is a unique fixed point $x \in \bar{B}_{2r}(0)$ of g_y , which is equivalent to that f(x) = y.
 - (c) Part (b) gives a well-defined inverse mapping $f^{-1}: \bar{B}_r(0) \to \bar{B}_{2r}(0)$. Prove that f^{-1} is continuous.
 - (d) Prove that f is C^1 on $B_r(0)$ and give the formula for $D(f^{-1})(y)$.
- 3. Prove that $L^2 = L^2([-\pi, \pi])$ is a Hilbert space. Moreover prove that the trigonometric functions form a Hilbert basis.
- 4. (a) Let f be a nonnegative function which is integrable over a measurable set E. Prove that for any given e > 0 there is a e > 0 such that for every measurable subset e > 0 with e > 0 we have

$$\int_A f < \epsilon.$$

(b) Let f be a Lebesgue integrable function on [a,b] and

$$F(x) = F(a) + \int_a^x f(t) dt.$$

Prove that F is absolutely continuous on [a,b] and F'(x) = f(x) for almost all x in [a,b].

5. (a) Let $K \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} K = 1$ and let $K_{\epsilon}(x) = \epsilon^{-n} K(\frac{x}{\epsilon})$. Define $f_{\epsilon}(x) = (f * K_{\epsilon})(x) = \int_{\mathbb{R}^n} f(t) K_{\epsilon}(x-t) dt, \quad x, t \in \mathbb{R}^n$.

Prove that if $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$ then $||f_{\epsilon} - f||_p \to 0$ as $\epsilon \to 0$.

(b) Prove that C_0^{∞} is dense in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$.

NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN.