系所別:

數學系

高等微積分

In these problems, \mathbb{R} denotes the set of all real numbers.

- 1. (15%) Let $f_n(x) = \sin x^n$, $n = 1, 2, \dots$, for $x \in (0, 1)$.
 - (a) Find the function $f_0(x)$ such that $f_0(x) = \lim_{n \to \infty} f_n(x)$ for every $x \in (0, 1)$.
 - (b) Does $f_n(x)$ converge uniformly to $f_0(x)$ on (0,1)? Give sufficient reason to support your answer.
- **2.** (15%) Let V be an open set in \mathbb{R}^n , $x_0 \in V$, and $f: V \to \mathbb{R}^m$.
 - (a) Give the definition that f be differtiable at x_0
 - (b) Let

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Find $f_x(0,0)$, $f_y(0,0)$ if they exist, and prove that f is not differentiable at (0,0).

3. (15%) Let E be the subset of the Euclidean space \mathbb{R}^2 defined by

$$E = \{(x, y) : y = \sin \frac{1}{x}, \ x \in (0, 1]\}.$$

- (a) Find the closure \overline{E} of E, and give your reason.
- (b) Which one of the sets E and \overline{E} is connected? Why?
- (c) Which one of the sets E and \overline{E} is compact? Why?
- **4.** (20%) Let \mathbb{R}^n , \mathbb{R}^m be Euclidean spaces and $D \subset \mathbb{R}^n$; $f:D \to \mathbb{R}^m$ be uniformly continuous on D.
 - (a) Prove that if $\{x_k\}_{k=1}^{\infty}$ is a Cauchy sequence in D, then $\{f(x_k)\}_{k=1}^{\infty}$ is a Cauchy
 - (b) If D is dense in \mathbb{R}^n , then show that f has a continuous extension to \mathbb{R}^n . That is, there is a continuous function $g: \mathbb{R}^n \to \mathbb{R}^m$ such that g(x) = f(x) for all $x \in D$.
- 5. (20%) (a) Prove that the series $\sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{x}{k+1}$ converges on \mathbb{R} .
 - (b) If

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{x}{k+1}, \quad x \in \mathbb{R},$$

then prove that $|f(x)| \le |x|$.

- (c) Prove that the series in (a) converges uniformly on any bounded subset E of \mathbb{R} .
- 6. (15%) Evaluate the surface integral

$$\iint_S x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy$$

where S is the surface, i.e., the set of all boundary points, of the solid

$$V = \{(x, y, z) : 0 \le x^2 + y^2 \le 1, \text{ and } 0 \le z \le 1\}.$$