科目: 高等微積分 校系所組: 中大數學系甲組 交大應用數學系甲組 清大數學系純粹數學組、應用數學組

共七題,滿分 100 分

1. (10 points) Let $A = [1,2) \cup [3,4]$ be a subset of \mathbb{R} . Define a function $f: A \mapsto \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \in [1, 2) \\ 1 & \text{if } x \in [3, 4]. \end{cases}$$

Prove or disprove that f is continuous on A.

- 2. (15 points) Let $\{x_n\}$ be a convergent sequence in a metric space and $\lim_{n\to\infty} x_n = x$. Prove or disprove that the set $A = \{x_1, x_2, \dots\} \cup \{x\}$ is compact.
- 3. (15 points) Let f and g be two non-constant real-valued functions defined in the same neighborhood N of a point $a \in \mathbb{R}^n$. Suppose that f is differentiable at a and that g is continuous at a, but not differentiable at a. Is it possible that the function $(f \cdot g) : N \mapsto \mathbb{R}$, defined by $(f \cdot g)(x) = f(x)g(x)$ for $x \in N$, differentiable at a? Justify your answer.
- 4. (15 points) Suppose that f is twice differentiable on an interval I containing a and that f'' is continuous on I. Compute

$$\lim_{h \to 0} \frac{f(a+2h) - 2f(a+h) + f(a)}{h^2} = ?$$

Give reasons that support your computation.

5. (15 points) For $n \in \mathbb{N}$ and $x \in [0, 1]$, let

$$f_n(x) = \frac{2nx}{1 + n^2x^2}.$$

Find the function $f:[0,1] \to \mathbb{R}$ so that $f_n(x) \to f(x)$ pointwisely on [0,1] as $n \to \infty$. Prove or disprove that the convergence is uniform.

6. (15 points) Show that near $(x_1, x_2, y_1, y_2, y_3) = (0, 1, 3, 2, 7)$ we can solve

$$\begin{cases} 2e^{x_1} + x_2y_1 - 4y_2 + 3 = 0\\ x_2 \cos x_1 - 6x_1 + 2y_1 - y_3 = 0 \end{cases}$$

uniquely for (x_1, x_2) as functions of (y_1, y_2, y_3) and find the values $\frac{\partial x_1}{\partial y_1}, \frac{\partial x_1}{\partial y_2}, \frac{\partial x_1}{\partial y_3}$ at the point $(y_1, y_2, y_3) = (3, 2, 7)$.

7. (15 points) Evaluate the integral

$$\int_0^3 \int_0^3 [x+y] \, dx dy,$$

where [t] is the greatest integer $\leq t$.