資格考(Algebra 2004-Fall)

- 1. Prove or disprove that there exists an infinite field F of characteristic 92011. (10%)
- 2. Let field F be an algebraic extension of a field K of characteristic 0 such that every polynomial in K[x] has a root in F. Prove or disprove that F is an algebraic closure of K. (15%)
- 3. Prove or disprove that every element in a finite field $\mathbb{Z}/p\mathbb{Z}$ may be written as the sum of two squares, where \mathbb{Z} denotes the ring of all rational integers and p a prime in \mathbb{Z} . (15%)
- 4. Let G be an abelian group and I, J be any infinite subgroups of G with G/I and G/J being finite groups. Prove or disprove that $I \cap J$ is an infinite subgroup of G. (15%)
- 5. Let D be a Dedekind domain and α , β elements in D. Prove or disprove that a greatest common divisor of $\{\alpha, \beta\}$ always exists. (15%)
- 6. Prove or disprove that the set consisting of zero and all zero divisors in a commutative ring R with identity 1 ≠ 0 contains at least one prime ideal.
 (15%)
- 7. Let E be a principal ideal domain and α , β nonzero nonunit elements in E. Suppose $\mathcal{T}_{\alpha\beta}(E') \supseteq (E/\alpha \beta E)^*$. Prove or disprove that $\mathcal{T}_{\alpha}(E') \supseteq (E/\alpha E)^*$, where E' is a subset of E, $\mathcal{T}_{\alpha}: E' \to E/xE'$ the canonical map and $(E/xE)^*$ the unit group of E/xE. (15%)