- 4. Let K be a field and let \overline{K} be a fixed algebraic closure of K. In the following questions, F_1 , F_2 , K_1 and K_2 are fields in \overline{K} . Suppose that F_1 is a Galois extension of K_1 and F_2 is a Galois extension of K_2 . Prove or give a counter example of the following:
 - (a) (7 pts.) $F_1 \cap F_2$ is a Galois extension of $K_1 \cap K_2$.
 - (b) (8 pts.) F_1F_2 is a Galois extension of K_1K_2 .
- 5. Let R be the polynomial ring $\mathbb{Z}[x]$. Fix a prime number p in \mathbb{Z} . Suppose that $f(x) = x^n + \sum_{i=0}^{n-1} a_i x^i \in \mathbb{Z}[x]$, where $p \mid a_i$ for all $0 \le i \le n-1$. Denote the ring $\mathbb{Z}[f(x)]$ by D.
 - (a) (5 pts.) Prove that R is integral over D and prove that D is integrally closed.
 - (b) (5 pts.) Prove that R is a free D-module with basis $\{1, x, \dots, x^{n-1}\}$.
 - (c) (5 pts.) Prove that the ideal (p, f(x)) generated by p and f(x) in D is a maximal ideal.
 - (d) (5 pts.) Consider the polynomial F(T) = f(T) f(x) in D[T]. Prove that F(T) is irreducible in D[T].
 - (e) (7 pts.) Let K be the quotient field of D and L be the splitting field of F(T) over K. Prove that $x \in L$ and [L:K] > n.
 - (f) (8 pts.) Let Γ be the Galois group of L over K. Suppose that $g(x) \in R$ satisfies $g(x^{\tau}) = g(x)$, $\forall \tau \in \Gamma$. Prove that there exists a polynomial $h(x) \in \mathbb{Z}[x]$ such that $g(x) = h(f(x)) \in D$.