Note: In the following, all functions are real-valued!

- 1. Let (X, \mathcal{B}, μ) be a finite measure space and f be a nonnegative measurable function on X. Prove that there exists a Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ of simple functions in $L^1(X, \mu)$ such that $f_n \to f$ almost uniformly if and only if $\sup\{\int_X \varphi d\mu : \varphi \text{ is simple and } \varphi \leq f\} < \infty$. (10%)
- 2. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of numbers in [0,1]. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{|x-a_n|}}$ is finite for almost all x in [0,1]. (10%)
- 3. Let μ and ν be σ -finite measures on (X, \mathcal{B}) .
 - (a) If $\nu \ll \mu$, prove that $\int_X f d\nu = \int_X f \cdot \frac{d\nu}{d\mu} d\mu$ for all ν -integrable functions f on X. (10%)
 - (b) If $\nu \ll \mu$ and $\mu \ll \nu$, find a relation of $\frac{d\nu}{d\mu}$ and $\frac{d\mu}{d\nu}$ and prove your assertion. (4%)
- 4. Let

$$f(x) = \begin{cases} x \sin(1/x) & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0; \end{cases} \quad \text{and} \quad g(x) = \begin{cases} x^3 \sin(1/x) & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0. \end{cases}$$

- (a) Determine whether f and g are of bounded variation on [0,1]. Give your proof in each case. (10%)
- (b) Determine whether f and g are absolutely continuous on [0,1]. Give your proof in each case. (6%)
- 5. Let $f(x,y) = \frac{xy}{(x^2+y^2)^2}$ for $-1 \le x,y \le 1$. Determine whether any of $\int_{-1}^{1} (\int_{-1}^{1} f(x,y) dx) dy$, $\int_{-1}^{1} (\int_{-1}^{1} f(x,y) dy) dx$ and $\int_{[-1,1]\times[-1,1]} f(x,y) dx dy$ exists. For the existing ones, give their value; for the others, give your proof for their nonexistence. (10%)
- 6. Let f be a function in $L^p[0,1]$ $(1 \le p < \infty)$ and let $F(x) = \int_0^x f(t)dt$ for x in [0,1].
 - (a) Prove that $||F||_p \le \frac{1}{\sqrt[p]{p}} ||f||_p$. (5%)
 - (b) Give a necessary and sufficient condition on f only (not involving F) for which "=" holds in (a). (5%)
- 7. Let S be a linear subspace of $L^q[0,1]$ that is closed as a subspace of $L^p[0,1]$, where $1 . Let <math>\{f_n\}_{n=1}^{\infty}$ be a sequence in S. Prove that $\{f_n\}_{n=1}^{\infty}$ is convergent in $(L^q[0,1], \|\cdot\|_q)$ if and only if $\{f_n\}_{n=1}^{\infty}$ is convergent in $(L^p(X,\mu), \|\cdot\|_p)$. (10%)
- 8. Let $A = [a_{ij}]$ be an *n*-by-*n* matrix with $a_{ij} > 0$ for all *i* and *j* and $\sum_{j=1}^{n} a_{ij} = 1$ for all *i*. Prove that there is a unique vector $x_0 = [x_1, x_2, \dots, x_n]^T$ with $x_i \ge 0$ for all *i* and $\sum_{i=1}^{n} x_i = 1$ such that $Ax_0 = x_0$. (10%)
- 9. Let f be a continuous function on [0,1]. Prove that

$$\lim_{n \to \infty} \frac{\int_0^1 x^n f(x) dx}{\int_0^1 x^n dx} = f(1). \quad (10\%)$$