

- 7. Let (X, \mathfrak{B}) be a mesurable space and on it, ν is a finite measure and μ a σ -finite measure, show the following are equivalent:
 - (a) $\nu \ll \mu$ and
 - (b) If the sequence $E_n \subseteq \mathfrak{B}$ has the property that $\lim_{n\to\infty} \mu(E_n) = 0$, then $\lim_{n\to\infty} \nu(E_n) = 0$.
- 8. (a) Show: The normed vector space $L^p(\mu)$ is a Banach space.
 - (b) Let ϕ be a continuous linear map from \mathbb{R}^n into a normed vector space F. Find the sup norm of ϕ .