2011年一月博士班資格考,《實分析》試題 (2011/1/28)

請回答下列問題,並給予詳細的證明或解釋。共計 6 題,滿分 100 分。

- (1) (17分) Let $\{f_{\alpha}\}_{{\alpha}\in I}$ be a family of real-value functions defined on [a,b]. Prove that if there is a constant M > 0 such that $|f_{\alpha}(x)| \leq M$ for all $x \in [a, b]$ and all $\alpha \in I$, then for any countable set E in [a, b], there exists a sequence $\{f_{\alpha_n}\}$ such that for any $x \in E$, the $\lim_{n \to \infty} f_{\alpha_n}(x)$ exists.
- (2) (17分) Let $\{f_n\}_{n\in\mathbb{N}}$ be a increasing sequence of measurable functions defined on [0, 1]. Prove that if f_n converges to f in measure on [0, 1], then $f_n(x_0) \to$ $f(x_0)$ as $n \to \infty$, where x_0 is any continuous point of f.
- (3) (17分) Suppose that g is a measurable function defined on the measurable set E. Prove that if $f \cdot g \in L^1(E)$ for any $f \in L^1(E)$, then g is a bounded function on $E \setminus Z$, where Z is a set of measure zero in E.
- (4) $(17 \hat{\alpha})$ Let f be a nonnegative measurable function on [0,1]. Prove that $f \in L^1([0,1])$ if and only if

$$\sum_{n=0}^{\infty} 2^n |\{x \in [0,1] : f(x) \ge 2^n\}| < \infty.$$

- (5) (16分) Let $f_n \in L^1([0,1])$, $n \in \mathbb{N}$, satisfies the following conditions:
 - (i) $|f_n(x)| \le F(x)$ for all $n \in \mathbb{N}$ and $x \in [0, 1]$, where $F \in L^1([0, 1])$;
 - (ii) $\lim_{n \to \infty} \int_{[0,1]} f_n(x) g(x) dx = 0$ for any $g \in C([0,1])$.

Prove that for any measurable set E in [0,1], $\lim_{n\to\infty}\int_E f_n(x)dx=0$.

- (6) (16分) Let f be a bounded and uniformly continuous function on \mathbb{R} and each $K_n \in L^1(\mathbb{R})$, $n \in \mathbb{N}$, satisfy the following conditions:
 - (i) $\int_{\mathbb{R}} |K_n(x)| dx \leq M$ for all $n \in \mathbb{N}$;

(ii) $\int_{\mathbb{R}}^{\mathbb{R}} K_n(x) dx = 1$ for all $n \in \mathbb{N}$; (iii) for any $\delta > 0$, $\lim_{n \to \infty} \int_{|x| \ge \delta} |K_n(x)| dx = 0$. Prove that $(K_n * f)(x)$ converges to f(x) uniformly on \mathbb{R} .