NCU Ph.D Qualification Exam. Real Analysis Aug 2018

Note that you are being graded not only on the correctness but also on your presentation. There are **nine** problems on this test.

- (1) (8ps) Let $B \subseteq \mathbb{R}^n$ be any set. Prove or disprove $\mathbb{R}^n \setminus \overline{B} = (\mathbb{R}^n \setminus B)^o$, where \overline{B} denotes the closure of the set B and X^o denotes the interior of the set X.
- (2) (12ps) Let $A \subset \mathbb{R}^n$ be a closed set. Given a continuous function $f : A \to [1, 2]$, define $g : \mathbb{R}^n \to \mathbb{R}$ by letting g(x) = f(x) if $x \in A$ and for $x \in \mathbb{R}^n \setminus A$

$$g(x) = \frac{\inf \{f(z) || z - x || | z \in A\}}{d(x, A)} ,$$

where in the above $d(x, A) = \inf \{ ||x - a|| | a \in A \}$ denotes the distance from x to the closed set A. Prove or disprove that g is a continuous function on \mathbb{R}^n .

- (3) (7ps) State Lusin's Theorem.
- (4) (7ps) Define a measurable set in \mathbb{R}^n .
- (5) (6ps) State Hölder's inequality.
- (6) (15ps) Let $\{E_k\}$ be a sequence of sets with $\sum |E_k|_e < \infty$. Show that $\limsup E_k$ has measure zero. In the above $|\cdot|_e$ denotes the outer measure of a set.
- (7) (15ps) Show that a set $E \subset \mathbb{R}^n$ is measurable if and only if for every set $A \subset \mathbb{R}^n$ we have $|A|_e = |A \cap E|_e + |A E|_e$.
- (8) **(15ps)**

Let $E \subset \mathbb{R}^n$ be any measurable set (not necessarily having finite measure). Fix 1 . $Suppose <math>f_k \to f$ a.e. on E, $f_k, f \in L^p(E)$ with $\sup\{\|f_k\|_p \mid k \in \mathbb{N}\} \leq M < \infty$, prove that for every $g \in L^q(E)$ where 1/p + 1/q = 1 we have $\int_E f_k g \to \int_E f g$.

(9) **(15ps)**

Give an example of a function $f : (0,1] \to \mathbb{R}$ which is **not** Lebesgue integrable on [0,1] but **improperly Riemann integrable** on (0,1]. Of course, you need to prove that your example works.