Ph. D. Qualifying Examination: Real Analysis (2015.08.28)

- 1. Prove or disprove the following statements: (50%)
 - (a) Let f, f_1, f_2, \cdots be measurable functions on the measure space (X, \mathcal{B}, μ) , and, $f_n \leq f_{n+1}$ for all $n \geq 1$. If $f_n \to f$ in measure, then $f_n \to f$ almost everywhere.
 - (b) Let $f: [1, \infty) \to \mathbb{R}$ be continuous. If the improper Riemann integral $\int_1^\infty f(x) dx$ exists, then f is Lebesgue integrable on $[1, \infty)$.
 - (c) Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that $f' \in L^1[0,1]$. Then

$$\int_{[0,1]} f'(x) dx = f(1) - f(0)$$

- (d) Let $f(x,y) = \frac{x^2 y^2}{(x^2 + y^2)^2}$ if $(x,y) \neq (0,0)$, and f(0,0) = 0. Then f is Lebesgue integrable on $[0,1] \times [0,1]$.
- (e) Let $1 \leq p < q \leq \infty$ and $E \subseteq L^q([0,1])$. Then the closure of E in $(L^q([0,1]), \|\cdot\|_q)$ is contained in the closure of E in $(L^p([0,1]), \|\cdot\|_p)$.
- 2. Find the value of the following limit:

$$\lim_{n \to \infty} \int_0^\pi \left(1 - \frac{x}{n} \right)^n \sin x dx. \quad (10\%)$$

3. Let μ be the Borel measure defined by

$$\mu(E) = \int_E \frac{dx}{(x^2 + 1)^2} \quad \text{for all Borel subsets } E \text{ of } \mathbb{R}.$$

Prove that

$$\int_{\mathbb{R}} f(x)d\mu(x) = \int_{\mathbb{R}} \frac{f(x)}{(x^2+1)^2} dx$$

for all nonnegative Borel measurable functions f on \mathbb{R} . (10%)

4. Let ν be the Lebesgue measure on [0, 1], and let μ be the counting measure on [0, 1]. Can there exist a μ -measurable function f such that

$$\nu(E) = \int_E f d\mu$$
 for all Lebesgue measurable subsets E of $[0, 1]$?

If such f exists, give your proof; otherwise, show that there does not exist such f. (10%)

- 5. Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 2$.
 - (a) Can there exist a positive constant C_1 such that

$$\left(\int_{\Omega} f^4\right)^3 \le C_1 \left(\int_{\Omega} f^6\right)^2 \text{ for all } f \in L^6(\Omega)?$$

(b) Can there exist a positive constant C_2 such that

$$\left(\int_{\mathbb{R}} g^4\right)^3 \le C_2 \left(\int_{\mathbb{R}} g^6\right)^2 \text{ for all } g \in L^4(\mathbb{R}) \cap L^6(\mathbb{R})?$$

Prove or disprove your answer. (10%)

6. Let $\ell^2 \equiv \{\{a_n\}_{n=0}^{\infty} : \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$ and $T \in (\ell^2)^*$ with $T(e_n) = 0$ for all $n \ge 1$, where e_n is the sequence with 1 at the *n*th place and 0 otherwise. Prove that there is some constant *c* such that $T(\{a_n\}_{n=0}^{\infty}) = ca_0$ for all $\{a_n\}_{n=0}^{\infty} \in \ell^2$. (10%)