Qualifying Examination January 2013

Real Analysis

(Choose 5 to complete your answer.)

- 1. Prove that: Let μ^* be the outer measure on $R^d, d \geq 1$. Then the set $M(\mu^*)$ of all μ^* -measurable subsets of R^d is a σ -algebra.
- 2. True or False:
 - (a) Let f and f_k , k = 1, 2, ... be measurable and finite a.e. in E. If $f_k \to f$ a.e. on E, then $f_k \to f$ in measure on E.
 - (b) If $f_k \to f$ in measure on E, then $f_k \to f$ a.e. on E.

If ture, show the proof, if false, give a counterexample.

3. If $a < f(x) \le b$ (a and b are finite) for $x \in E$, then show that

$$\int_{E} f = -\int_{a}^{b} \alpha d\omega(\alpha)$$

where ω is a distribution function of f on E.

- 4. Prove the following generalization of Hölder's inequality: if $\sum_{i=1}^{k} \frac{1}{p_i} = \frac{1}{r}$ and $p_i, r \geq 1$ then $||f_1 \cdots f_k||_r \leq ||f_1||_{p_1} \cdots ||f_k||_{p_k}$.
- 5. (a) Suppose that $f_k \to f$ a.e. and that $f_k, f \in L^p$, $1 . If <math>||f_k||_p \le M < +\infty$, show that $\int f_k g \to \int f g$ for all $g \in L^q$, $\frac{1}{p} + \frac{1}{q} = 1$
 - (b) A sequence $\{f_k\}$ in L^p is said to converge weakly to a function f in L^p if $\int f_k g \to \int f g$ for all $g \in L^q$, $\frac{1}{p} + \frac{1}{q} = 1$. Prove that if $f_k \to f$ in L^p norm, $1 \le p \le \infty$, then $\{f_k\}$ converges weakly to f in L^p . Given an example to state that the converse is not true.

- 6. Use Minkowski's integral inequality to prove : if $1 \leq p \leq \infty, f \in L^p(\mathbb{R}^n)$, and $g \in L^1(\mathbb{R}^n)$, then $f * g \in L^p(\mathbb{R}^n)$ and $||f * g||_p \leq ||f||_p ||g||_1$.
- 7. Let $\phi(x), x \in \mathbb{R}^n$, be a bounded measurable function such that $\phi(x) = 0$ for $x \geq 1$ and $\int \phi = 1$. For $\varepsilon > 0$, let $\phi_{\varepsilon}(x) = \varepsilon^{-n}\phi(\frac{x}{\varepsilon})$. $(\phi_{\varepsilon}$ is called an approximation to the identity.) If $f \in L(\mathbb{R}^n)$, show that $\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x)$ in the Lebesgue set of f. [Note that $\int \phi_{\varepsilon} = 1$ when $\varepsilon > 0$, so that $(f * \phi_{\varepsilon})(x) f(x) = \int [f(x y) f(x)]\phi_{\varepsilon}(y)dy$.]