

NCU PH.D. QUALIFICATION EXAMINATION DIFFERENTIAL GEOMETRY

FEBRUARY 17 2005

Show your works in details. In each problem, you may assume the former part(s) and work on the latter part(s) directly.

- (a) Let f(x₁,...,x_n) be C[∞] over B₀(r) with f(0) = 0. Show that there are g_i ∈ C[∞](B₀(r)), i = 1,...,n, such that f(x) = ∑_{i=1}ⁿ x_ig_i(x).
 - $g_i \in C^{\infty}(B_0(r)), i = 1, \dots, n$, such that $f(x) = \sum_{i=1}^n x_i g_i(x)$. (b) Use (a) to show that an \mathbb{R} -linear map $F : C^{\infty}(TM) \to C^{\infty}(TM)$ is a tensor if and only if F(fv) = fF(v) for all $f \in C^{\infty}(M), v \in C^{\infty}(TM)$.
 - (c) State and prove Cartan's formula for $d\omega$ where $\omega \in A^2(M)$.
 - (d) Let ω be a 2-form. Define $E_p := \{ v \in T_pM \mid \omega(v, u) = 0, \forall u \in T_pM \}$. Assume $d\omega = 0$ and E_p 's are equi-dimensional for all $p \in M$. Show that the distribution $\{E_p\}_{p \in M}$ is integrable.
- (a) Define the Lie derivative. For two C[∞] vector fields V, W with compact support on a manifold, show that L_VW = [V, W].
 - (b) For $\alpha \in A^p(M)$, show that $L_V \alpha = (\iota_V d + d\iota_V) \alpha$.
- 3. (a) Derive the the second variation formula for geodesics.
 - (b) Prove the Bonnet-Myer Theorem: Let M be a complete Riemannian manifold of dimension n. If Ric $\geq (n-1)k$ with k>0 being a constant, then M is compact with diam $M \leq \pi/\sqrt{k}$.
- 4. (a) State and prove Gauss' equation for submanifolds.
 - (b) Let \bar{M} be a compact oriented three dimensional manifold and M be an oriented minimal surface in \bar{M} with unit normal vector field N. Show that $\text{Ric}_{\bar{M}}(N,N) = (R_{\bar{M}} |B|^2)/2 K_M$ on M.
 - that $\operatorname{Ric}_{\bar{M}}(N,N) = (R_{\bar{M}} |B|^2)/2 K_M$ on M. (c) If \bar{M} has positive scalar curvature $(R_{\bar{M}} > 0)$, show that there is no stable oriented minimal surface M in \bar{M} with $g(M) \geq 1$.
 - (You may use the second variation formula of area with variation field V = uN, $u \in C^{\infty}(M)$: $A''(0) = \int_{M} |\nabla u|^{2} u^{2}(\text{Ric}_{\bar{M}}(N, N) + |B|^{2})$).
- (a) Use the Stokes' theorem to show that there is a well-defined map T_M:
 H^p_{dR}(M) → H^p(M; R) which commutes with pull backs.
 - (b) For M compact, show that a smooth representative $\alpha \in A^p(M)$ of a de Rham cohomology class has minimal length if and only if $\Delta \alpha = 0$.
 - (c) State the Hodge decomposition theorem and use it to show that each cohomology class contains an unique minimal representative.

NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN.