

- 1. (20%) Consider the system $\dot{x} = f(x)$ with $f \in C^1(E)$, where E is an open subset of \mathbb{R}^n . Let Γ be a trajectory of the system in a compact subset of \mathbb{R}^n . Show that the ω -limit set of Γ is a non-empty, closed, connected and compact subset of E.
- 2. (20%)
 - (a). State the Liouville's theorem.
 - (b). Let $E \subseteq \mathbb{R}^n$, $f \in C^1(E)$ and $u(t,y) \in C^1(G)$ be a solution of the initial value problem:

$$\dot{x} = f(x)$$
 and $x(0) = y$.

where $G = [-a, a] \times N_{\delta}(x_0), a > 0, x_0 \in E$ and $\delta > 0$. Show that for all $t \in [0, a]$

$$\det \frac{\partial u}{\partial y}(t, x_0) = \exp \int_0^t \nabla \cdot f(u(s, x_0)) ds.$$

- 3. (20%)
 - (a). State the Poincaré-Bendixson theorem in \mathbb{R}^2 .
 - (b). Show that there is a periodic orbit of the following system:

$$\dot{x} = -y + x(r^4 - 3r^2 + 1)$$
 and $\dot{y} = x + y(r^4 - 3r^2 + 1)$.

in the annular region $A = \{x \in \mathbb{R}^2 | 1 < |x| < 3\}$. Here $r^2 = x^2 + y^2$.

- 4. (20%)
 - (a). State the Floquet's theorem.
 - (b). Let $\gamma(t) = (\cos t, \sin t, 0)^T$ be a periodic orbit of the following system:

$$\dot{x} = x - y - x^3 - xy^2$$
, $\dot{y} = x + y - x^2y - y^3$ and $\dot{z} = \lambda z$.

Show that $\Phi(t)$ defined by

$$\Phi(t) = \begin{pmatrix} e^{-2t} \cos t & -\sin t & 0 \\ e^{-2t} \sin t & \cos t & 0 \\ 0 & 0 & e^{\lambda t} \end{pmatrix}$$

is a fundamental matrix of the linearization of the above system about the periodic orbit $\gamma(t)$.

- (c). Find the characteristic exponents of $\gamma(t)$.
- 5. (20%)
 - (a). State the theorem of Dulac's Criteria.
 - (b). Use the Dulac function $B(x,y) = be^{-2\beta x}$ to show that the system

$$\dot{x} = y$$
 and $\dot{y} = -ax - by + \alpha x^2 + \beta y^2$

has no limit cycle in \mathbb{R}^2 .