Qualify Exam for Ordinarry Differential Equations

Department of Mathematics, National Central University

1.(10%)

Let E be a normed vector space, $W \subset \mathbf{R} \times E$ an open set, and $f, g : W \to E$ continuous. Suppose that for all $(t, x) \in W$, $|f(t, x) - g(t, x)| < \varepsilon$. Let K be a Lipschitz constant in x for f(t, x). If x(t), y(t) are solutions to x' = f(t, x) and y' = g(t, y), respectively, on some interval $J, t_0 \in J$ and $x(t_0) = y(t_0)$. Show

$$|x(t) - y(t)| \le \frac{\varepsilon}{K} \{ e^{K|t - t_0|} - 1 \}.$$

2.(20%)

Consider the system

$$x' = -y + x(1 - x^{2} - y^{2}),$$

$$y' = x + y(1 - x^{2} - y^{2}).$$

- (1) (10%) Find the Poincaré map for the periodic solution $\Gamma(t) := (\cos t, \sin t)^T$.
- (2) (10%) Use the Poincaré map to determine the stability of $\Gamma(t)$.

3. (15%)

Consider the following system:

$$x' = x - y - x^3$$
 $y' = x + y - y^3$.

Show that there is at least one stable limit cycle in the region $A := \{(x,y) | 1 \le |(x,y)| \le \sqrt{2} \}.$

- 4. (15%)
 - (1) (5%) State the Floquet's Theorem.
 - (2) (10%) Prove the statement (which is given by you) in part (1).

5. (30%)

Consider the system

$$x' = -y + x(1 - x^{2} - y^{2}),$$

$$y' = x + y(1 - x^{2} - y^{2}),$$

$$z' = \lambda z,$$

where λ is a constant. Let $\gamma(t) = (\cos t, \sin t, 0)^T$ be a periodic orbit of the system.

- (1) (5%) Find the linearization of the system about $\gamma(t)$.
- (2) (10%) Find the fundamental matrix $\Phi(t)$ for the linearized system which satisfies $\Phi(0) = I$.
- (3) (15%) Compute the characteristic multiplier of $\gamma(t)$ and dimension of stable, unstable and center manifolds of $\gamma(t)$.

6. (10%)

Find solution of the following initial value problem:

$$x'(t) = \begin{bmatrix} 0 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x(t), \quad x(0) = x_0,$$

for some constant vector x_0 .