Differential Equations

Ph.D. Qualify Exam for the Dept. of Math, Nat'l Central Univ.

Problem 1. Complete the following.

1. (10%) Consider an one-parameter family of linear equations

$$x'(t) = A(\alpha, t)x(t)$$
,

where A is a continuous function of t and α . Show that the flow $\phi(\alpha, t, x)$ depends continuously on x and α .

2. (10%) Consider the equations of variation

$$x'(t) = f(t, x(t)),$$

$$y'(t) = (Df)(t, x(t))y(t).$$

with a C^1 velocity field f. Show that the equations above have a unique solution which depends continuously on x(0) and y(0).

Problem 2. (10%) Let v(t) be a continuously differentiable function satisfying the differential inequality

$$v'(t) \le c(t) + \int_0^t u(s)v(s)ds$$
, $v(0) = v_0$,

where c(t), u(t) are both non-negative continuous functions. Let w(t) satisfy the differential equation

$$w'(t) = c(t) + \int_0^t u(s)w(s)ds$$
, $w(0) = v_0$.

Prove that $w(t) \ge v(t)$ for $t \ge 0$. Is it necessary that both c(t) and u(t) be non-negative for the above statement to hold?

Problem 3. For the ODE x'(t) = f(x), we consider the corresponding first order partial differential operator $\mathcal{A} = f(x) \cdot \nabla x$ acting on vector-valued functions u(x) (componentwise).

- 1. (5%) Suppose that f(x) = Mx with M a $d \times d$ matrix. Verify that $e^{tA}x = e^{tB}x$. Is it true in general that $e^{tA}u(x) = e^{tM}u(x)$?
- 2. (10%) The first integrals of an ODE are real-valued functions U(t,x) such that U(t,x(t)) do not change in time if x(t) is a solution to that ODE. In other words, the first integrals are certain invariants of the system. Show that any solution U(t,x) to the PDE

$$\frac{\partial U}{\partial t} + f(t, x) \cdot \nabla_x U = 0$$

is a first integral of the ODE.

3. (10%) Use the method of characteristics to find the general form of the first integrals.

Problem 4. (15%) Find the form of the regions of stability in the (ϵ, ω) -plane for the system described by the equation

$$x'' = -f(t)x,$$

where f is a periodic function with period 2π , and

$$f(t) = \begin{cases} \omega + \epsilon & \text{for } 0 \le t < \pi, \\ \omega - \epsilon & \text{for } \pi \le t < 2\pi, \end{cases} \quad \epsilon \ll 1.$$

Problem 5. (15%) Consider the nonlinear oscillator

$$x'' + cx' + ax + bx^3 = 0.$$

where a, b and c are positive constants, and y = x'. Show that (x, y) = (0, 0) is Liapounov stable using Liapounov function of the form $V(x, y) = \alpha x^2 + \beta x^4 + \gamma y^2$ for some positive constants α, β and γ .

Problem 6. (15%) Let c > 0. Solve the boundary value problem

$$u(x) - u''(x) = \delta(x - c)$$
 for $x > 0$, (0.1a)

$$u(0) = 0$$
, (0.1b)

$$u(\infty) \equiv \lim_{x \to \infty} u(x) = 0,$$
 (0.1c)

where δ is the Dirac delta function (so $\delta(x-c)$ is the Dirac delta function at the point c).