博士班資格考科目	考試時間	節次	頁數
Differential Equations	8月 24 日	$9: 00 \mathrm{am}-12: 00 \mathrm{pm}$	共 1 頁

1．（A）（12 points）Consider the following initial value problem

$$
\text { (1) }\left\{\begin{array}{l}
y^{\prime \prime}+\left(y^{2}+1\right) y^{\prime}+\sin y=0 \\
y(0)=1, \quad y^{\prime}(0)=1
\end{array}\right.
$$

Please show in detail that the solution of（1）exists uniquely and locally．
（B）（13 points）Consider the following initial value problem

$$
\text { (2) }\left\{\begin{array}{l}
x^{\prime}=x\left(1-\frac{x}{2}\right)-x y \\
y^{\prime}=y(x-2), \\
x(0)>0, \quad y(0)>0
\end{array}\right.
$$

Show that the solutions $x(t), y(t)$ exist for all $t>0$ ，and the solutions are positive and bounded for all $t>0$ ．

2．（15 points）Solve the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}=A x \\
x(0)=x_{0}
\end{array}\right.
$$

where

$$
A=\left[\begin{array}{ccc}
0 & -2 & 0 \\
1 & 2 & 3 \\
0 & 1 & -2
\end{array}\right]
$$

Determine the stable and unstable subspaces and sketch the phase portrait．
3．（20 points）Consider the following initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}=x\left(1-\frac{x}{2}-y\right) \\
y^{\prime}=(2 x-1-2 y) y \\
x(0)>0, \quad y(0)>0
\end{array}\right.
$$

（A）Find all equilibria with nonnegative components．
（B）Do stability analysis for each equilibrium．
（C）Find the stable manifold of each saddle point．
（D）Predict the global asymptotic $(t \rightarrow \infty)$ behavior．
4．（20 points）Consider the following boundary value problem

$$
(3)\left\{\begin{array}{l}
u^{\prime \prime}=k(x) \sin ^{2} u, \quad \text { in } \quad(0,1) \\
u(0)=A, \\
u(1)=B, \quad A, B \in \mathbb{R}
\end{array}\right.
$$

where k is a continuous function of x satisfying $|k(x)| \leq 1$ for all $x \in[0,1]$ ．Find the Green function of（3），and use contraction mapping theorem to show the existence and uniqueness of solution for （3）．
5．（20 points）Find the first three successive approximations $u^{(1)}(t, a), u^{(2)}(t, a)$ and $u^{(3)}(t, a)$ for the stable manifold S of

$$
\left\{\begin{array}{l}
\dot{x_{1}}=-x_{1}-x_{2}^{2} \\
\dot{x_{2}}=x_{2}+2 x_{1}^{2},
\end{array}\right.
$$

near the origin，and use $u^{(3)}(t, a)$ to approximate S ．

