1. (14%) Let $u:[0, b] \rightarrow \mathbb{R}^{+}$is continuous that satisfies

$$
u(t) \leqslant M+\int_{0}^{t} k(s) g(u(s)) d s \text { for } t \in[0, b]
$$

where $M \geqslant 0, k:[0, b] \rightarrow \mathbb{R}^{+}$is continuous, g is continuous and monotone increasing. Show that

$$
u(t) \leqslant \Phi^{-1}\left(\Phi(M)+\int_{0}^{b} k(s) d s\right) \text { for } t \in[0, b]
$$

where $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is given by $\Phi(u)=\int_{u_{0}}^{u} \frac{d s}{g(s)}$ for some constant $u_{0}, u \in \mathbb{R}$.
2. (14%) Consider the following initial value problem

$$
\begin{aligned}
& \dot{x}=f(x, t)+\int_{0}^{t} g(x(s), s) d s \\
& x(0)=x_{0}
\end{aligned}
$$

where f and g are Lipschitz continuous with respect to x in some neighborhood containing $\left(x_{0}, 0\right)$. Show that there exists $b>0$ such that the solution exists uniquely in $(-b, b)$.
3. (10%) Solve the linear system

$$
\begin{aligned}
\dot{x} & =-y \\
\dot{y} & =x \\
\dot{z} & =y
\end{aligned}
$$

with the initial condition $\boldsymbol{x}(0)=\boldsymbol{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)^{T}$.
4. (a) (7%) Show that $\Phi(t)=\left(\begin{array}{cc}e^{-2 t} \cos t & -\sin t \\ e^{-2 t} \sin t & \cos t\end{array}\right)$ is a fundamental matrix solution of $\boldsymbol{x}=A(t) \boldsymbol{x}$ with $A(t)=\left(\begin{array}{cc}-2 \cos ^{2} t & -1-\sin 2 t \\ 1-\sin 2 t & -2 \sin ^{2} t\end{array}\right)$
(b) (7%) Find the inverse of $\Phi(t)$ and solve the nonhomogeneous linear system $\dot{\boldsymbol{x}}=$ $A(t) \boldsymbol{x}+b(t)$ with $A(t)$ given above and $b(t)=\left(1, e^{-2 t}\right)^{T}$.
5. (10%) Show that the system

$$
\begin{aligned}
& \dot{x}=\frac{y}{1+x^{2}} \\
& \dot{y}=\frac{-x+y\left(1+x^{2}+x^{4}\right)}{1+x^{2}}
\end{aligned}
$$

has no limit cycle on \mathbb{R}^{2}.
6. (12%) Show that there is a periodic orbit of the following system:

$$
\begin{aligned}
\dot{x} & =-y+x\left(r^{4}-3 r^{2}+1\right) \\
\dot{y} & =x+y\left(r^{4}-3 r^{2}+1\right) \\
r^{2} & =x^{2}+y^{2}
\end{aligned}
$$

in the annular region $A=\left\{x \in \mathbb{R}^{2}: 1<|x|<3\right\}$.
7. (12\%) Do the stability analysis of the Brusselator equations:

$$
\begin{aligned}
& \frac{d x}{d t}=a-(b+1) x+x^{2} y, a, b>0 \\
& \frac{d y}{d t}=b x-x^{2} y
\end{aligned}
$$

8. (a) (7\%) Show that the system $\dot{x}=-x-x y^{2}, \dot{y}=-y-x^{2} y$ is globally asymptotically stable, by guessing a suitable Liapunov function.
(b) (7%) Consider the system

$$
\begin{aligned}
& \dot{x}=x^{3}+y x^{2} \\
& \dot{y}=-y+x^{3} .
\end{aligned}
$$

Show that $(0,0)$ is an unstable equilibrium by using Lyapunov function

$$
V(x, y)=\frac{x^{2}}{2}-\frac{y^{2}}{2}
$$

