國立中央大學數學系九十三學年度博士班資格考試題卷

科目:常微分方程

1.(15%) Let r, k, and f be real and continuous functions which satisfy $r(t) \ge 0$, $k(t) \ge 0$, and

$$r(t) \le f(t) + \int_a^t k(s)r(s)ds, \ a \le t \le b.$$

Show that

$$r(t) \le \int_a^t k(s)f(s)e^{\int_s^t k(u)du}ds + f(t), \ a \le t \le b.$$

2.(15%) Let E be a normed vector space, $W \subset \mathbf{R} \times E$ an open set, and f,g: $W \to E$ continuous. Suppose that for all $(t,x) \in W$, $|f(t,x) - g(t,x)| < \varepsilon$. Let K be a Lipschitz constant in x for f(t,x). If x(t), y(t) are solutions to x' = f(t,x) and y' = g(t,y), respectively, on some interval J, and $x(t_0) = y(t_0)$. Show

$$|x(t) - y(t)| \le \frac{\varepsilon}{K} \{e^{K|t - t_0|} - 1\}.$$

3.(15%) Let I be an finite interval, $g_i \in C(I)$, $k_i \in C^1(I)$ for i = 1, 2 with $g_1 < g_2$ and $k_1 > k_2 > 0$ on \bar{I} . Let ϕ_i be a solution on I of $(k_i y')' + g_i y = 0$ and let t_1 and t_2 be two consecutive zeros of ϕ_1 . Show that ϕ_2 has at least one zero in the interval (t_1, t_2) .

4. (10%) If a nontrivial solution ϕ of $y'' + (A + B\cos 2t)y = 0$ has 2n zeros in $(-\pi/2, \pi/2)$ and if A, B > 0, show that $A + B \ge (2n - 1)^2$.

5.(20%) Write the planar system

$$\frac{dx}{dt} = -y - x(\mu - (x^2 + y^2 - 1)^2),$$

$$\frac{dy}{dt} = x - y(\mu - (x^2 + y^2 - 1)^2),$$

in polar coordinates and show that for all $\mu > 0$ there are two one-parameter families of periodic orbits given by $\gamma_{\mu}^{\pm}(t) = \sqrt{1 \pm \mu^{1/2}} (\cos t, \sin t)^T$ with parameter μ . Discuss the phase portraits and draw the bifurcation diagram.