6. (15%) Consider Lotka-Volterra two species competition model

$$\frac{dx}{dt} = \gamma_1 x \left(1 - \frac{x}{K_1}\right) - \alpha x y,$$

$$\frac{dy}{dt} = \gamma_2 y \left(1 - \frac{y}{K_2}\right) - \beta x y,$$

with $\gamma_1 > 0$, $\gamma_2 > 0$, $K_1 > 0$, $K_2 > 0$, $\alpha > 0$ and $\beta > 0$. Show that there is no periodic orbit in the first quadrant.

7. (10%) Consider linear homogeneous systems x' = A(t)x, $-\infty < t < \infty$, where the elements of A are continuous functions on \mathbf{R} and A(t) = A(t+T) for some T>0. Let $\Phi(t)$ be a fundamental matrix for the systems, show that there exists a nonsingular matrix P which is also periodic with period T and a constant matrix D, such that $\Phi(t) = P(t)e^{tD}$.