4. (20%) Consider the equation of simple pendulum with damping

$$\theta'' + \beta \theta' + k^2 \sin \theta = 0, \ \beta > 0, k > 0, \tag{5}$$

and its equivalent system

$$\begin{cases} \theta' = \psi \\ \psi' = -k^2 \sin \theta - \beta \psi. \end{cases}$$
 (6)

- (a) Prove $\lim_{t\to\infty} \theta'(t) = 0$ by using the decreasing property of the energy function for system (6).
- (b) Sketch the approximate orbits of system (6) in the phase plane.
- 5(a). (5%) State the Poincare-Bendixson Theorem.
 - (b) (15%) Use the Poincare-Bendixson to prove the following system possesses a limit cycle:

$$\begin{cases}
\frac{dx}{dt} = \gamma x \left(1 - \frac{x}{K}\right) - \frac{mx}{a+x}y \\
\frac{dy}{dt} = \left(\frac{mx}{a+x} - d\right)y, & \gamma, K, m, a, d > 0. \\
x(0) > 0, y(0) > 0,
\end{cases}$$
(7)