Qualify Exam for Differential Equations

2011. Spring semester

1. (a) (10%) Suppose that $x:[0,\infty)\to[0,\infty)$ and $y:[0,\infty)\to[0,\infty)$ are both continuous and satisfies

$$x'(t) + y(t) \le \sqrt{y(t)}x(t) \quad \forall t \in [0, \infty).$$

Show that there exists a T > 0, depending only on x(0), such that

$$x(t) + \int_0^t y(s)ds \le M \qquad \forall t \in [0, T]$$

for some M depending on x(0).

(b) (5%) Suppose that $x:[0,\infty)\to[0,\infty)$ is continuous and satisfies

$$x(t) \le M + Ctx(t)^2 \qquad \forall t \in [0, \infty)$$

for some constant M and C. Show that there exists a T > 0, independent of x, such that

$$x(t) \le 2M \qquad \forall t \in [0, T].$$

Note: (a) and (b) are NOT related.

2. Consider the 2-d system

$$x' = x + e^y, \quad y' = -y.$$

- (a) (10%) Show that the system has a saddle point at (-1,0) and its unstable manifold is the x-axis.
- (b) (10%) Let (x, y) be a point on the stable manifold and close to (-1, 0). Introduce a new variable u = x + 1 and write the stable manifold as

$$y = a_1 u + a_2 u^2 + \mathcal{O}(u^3)$$
.

Determine the coefficients a_1, a_2 .

- 3. (15%) Show that x' = y, $y' = -x + x^3$ has a fixed point at the origin that is a center. Show that all trajectories in a neighborhood of the origin is closed (i.e., periodic orbits).
- 4. Consider the operator

$$(Lx)(t) = \left(-\frac{d^2}{dt^2} + q(t)\right)x(t)$$
 or $Lx = -x'' + qx$,

in which q(t) is a smooth periodic function with period 1. Let $y_1(t, \lambda)$, $y_2(t, \lambda)$ be solutions of the equation $Ly = \lambda y$ with the condition

$$(y_1(0), y_1'(0)) = (1, 0), \quad (y_2(0), y_2'(0)) = (0, 1).$$
 (1)

(a) (10%) Show that $Ly = \lambda y$ has at least one periodic solution of period 1 if and only if

$$y_1(1,\lambda) + y_2'(1,\lambda) = 2$$
.

(b) (10%) Show that $Ly=\lambda y$ has at least one periodic solution of period 2, but none of period 1, if and only if

$$y_1(1,\lambda) + y_2'(1,\lambda) = -2$$
.

5. (15%) Show that (0,0) is a globally asymptotically stable equilibrium to the system

$$x' = -x^3 + 2y^3,$$

$$y' = -xy^2.$$

- 6. Let Ω be a bounded smooth domain of \mathbb{R}^2 , and $u: \mathbb{R}^2 \to \mathbb{R}^2$ be a smooth vector field depending only on the spacial variables. Consider the dynamical system x' = u(x).
 - (a) (10%) Suppose that $u \cdot N = 0$ on $\partial \Omega$, where N is the outward-pointing normal of $\partial \Omega$, and there is no equilibrium point on $\partial \Omega$. Show that $\partial \Omega$ is an orbit.
 - (b) (5%) Assume conditions in (a) and suppose further that u is a divergence-free vector field, that is, if $u=(u_1,u_2)$, then $\frac{\partial u_1}{\partial x_1}+\frac{\partial u_2}{\partial x_2}=0$. Show that there is a neighborhood U of $\partial\Omega$ such that the trajectory starting from x is a close orbit for every $x\in U$.

Hint: For (b), you might need to recall the proof of Poincaré-Bendixon Theorem and the divergence theorem.