博士班資格考

## 圖荷 2013,8.

## GRAPH THEORY

In the following, graph means finite simple graph.

- 1. Show that every nontrivial graph G contains a bipartite spanning subgraph Hsuch that  $deg_H(v) \geq \frac{1}{2} deg_G(v)$  for all v in V(G). (5 points)
- 2. Let G be a connected graph of order  $n \geq 3$ . Suppose that  $\deg x + \deg y \geq n$  for every pair of nonadjacent vertices x, y in G. Show that G contains a Hamiltonian cycle. (15 points)
- 3. Let diam G denote the maximum distance between two vertices in a graph G. Show that if diam  $G \ge 3$ , then diam  $G^c \le 3.(10 \text{ points})$
- 4. Let G be a k-regular bipartite graph ( $k \geq 1$ ). Use Hall Theorem to show that G contains a perfect matching. (5 points)
- 5. Show that every graph is an induced subgraph of a regular graph. (5 points)
- 6. Let G be a connected graph. Let k(G) and k'(G) denote the connectivity and the edge connectivity, respectively of G. Show that  $k(G) \leq k'(G)$ . (10 points)
- 7. For  $k, l \in N$ , let r(k, l) denote the minimum n such that any graph on n vertices contains either a clique of order k or an independent set of order l. Show that
  - (1)  $r(k+1, l+1) \le r(k+1, l) + r(k, l+1)$ . (10 points) (2)  $r(k, l) \le {k+l-2 \choose k-1}$ . (5points) (3)  $r(k, k) \ge 2^{k/2}$ . (10 points)
- 8. Let  $d_1, d_2, ..., d_n$  be the degree sequence of a graph. Show that  $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min\{k, d_i\}$  for  $1 \leq k \leq n$ . (10 points)
- 9. Let  $\chi(G)$  denote the chromatic number of a graph G. Show that  $\chi(G) \ge \frac{|V(G)|^2}{|V(G)|^2 - 2|E(G)|}.$  (15 points)