圖論 2013.1

1.(1)(15%) Let G be a graph of order n such that $\deg x + \deg y \ge n$ for every pair of nonadjacent vertices x and y in G. Show that G contains a Hamiltonian cycle.

- (2) (5%) Let G be a graph of order n such that deg x + deg y ≥ n-1 for every pair of nonadjacent vertices x and y in G. Show that G contains a Hamiltonian path.
- (3) (5%) Let G be a graph of order n such that $|E(G)| \ge \binom{n-1}{2} + 1$. Show that G contains a Hamiltonian path.
- 2. (10%) $t_1, t_2, \dots, t_n \in \mathbb{N} \ (n \ge 2), \ t_1 + t_2 + \dots + t_n = 2(n-1).$

Show that there exists a tree with t_1 , t_2 ,, t_n as its degree sequence.

- 3. (10%) Let T be a tree of order m, and G be a graph with minimum degree $\delta(G) \geq m-1$. Show that G contains a subgraph isomorphic to T.
- 4. (5%) G is a k-regular bipartite graph (k≥1). Use Hall Theorem to show that G contains a perfect matching.
- 5. (10%) Let G be a graph such that every two odd cycles in G have at least one common vertex. Show that the chromatic number $\chi(G) \leq 5$.
- 6. (1) (5%) Let G be a connected plane graph with n vertices, e edges and f faces. Show that n-e +f=2.
 - (2) (5%) Let G be a planar graph with at least three vertices. Show that $|E(G)| \le 3|V(G)| 6$.
 - (3) (5%) Show that every planar graph contains a vertex with degree ≤ 5 .
- 7. (10%) Let G be a graph. A covering of G is a set C of vertices of G such that every edge of G is incident with at least one vertex in C.

Let $\alpha(G)$ = the max. number of vertices in an independent set of G, $\beta(G)$ = the min. number of vertices in a covering of G. Show that $\alpha(G) + \beta(G) = |V(G)|$.

8. (15%) Let G be a graph of order n.

Shat that (1)
$$\chi(G) + \chi(G^C) \le n+1$$
, (2) $\chi(G) \cdot \chi(G^C) \le \left(\frac{n+1}{2}\right)^2$.