間

國立中央大學數學系

博士班資格考試《數理統計》試題,2001年9月

Qualifying Exam (Mathematical Statistics)

Sep. 3, 2001

- 1. a) Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independently distributed as E(a, b) (exponential with location and scale parameters a and b, respectively) and E(a', b'), respectively.
 - a) If a, b, a', b' are all unknown, show that $X_{(1)}$ (the smallest among X_1, \ldots, X_n), $Y_{(1)}$, $\sum_{i=1}^{n} (X_i X_{(1)})$, and $\sum_{i=1}^{m} (Y_i Y_{(1)})$ are jointly sufficient and complete. [10%]
 - b) Find the UMVUE's of a' a and b'/b. [10%]
- 2. Let X_1, X_2, \ldots, X_n be a random sample from the uniform distribution on $(0, \theta)$. Show that
 - a) For testing $H_0: \theta \leq \theta_0$ against $\theta > \theta_0$ any test ϕ is UMP at level α for which $E_{\theta_0}\phi(\underline{X}) = \alpha$, $E_{\theta}\phi(\underline{X}) \leq \alpha$, for $\theta \leq \theta_0$, and $\phi(\underline{X}) = 1$ when $\max(X_1, \dots, X_n) > \theta_0$.

[10%]

- b) For testing $H_0: \theta = \theta_0$ against $\theta \neq \theta_0$ a unique UMP level α test exists, and is given by $\phi(\underline{X}) = 1$ when $\max(X_1, \dots, X_n) > \theta_0$, or $\max(X_1, \dots, X_n) \leq \theta_0 \sqrt[n]{\alpha}$, and $\phi(\underline{X}) = 0$ otherwise. [10%]
- 3. Let X_1, X_2, \ldots, X_n be i.i.d. $N(\theta, 1)$ random variables where $\theta \in R$. Let $\bar{X} = \sum_{i=1}^n X_i/n$ and consider the squared error loss.
 - a) Show that \bar{X} is admissible. [10%]
 - b) State the Stein's Paradox and give an example. [10%]
- 4. Let the random variable X have probability mass function

$$P_{\theta}(x) = \begin{pmatrix} r+x-1 \\ x \end{pmatrix} \theta^{x} (\theta+1)^{-(r+x)}, \quad x = 0, 1, 2, \dots,$$

where r > 0 is a known constant, and $\theta > 0$ is the unknown parameter. Consider the loss function $L(\theta, a) = (\theta - a)^2/[\theta(\theta + 1)]$.

- a) Find the Bayes estimator of θ with respect to the prior $\pi(\theta) = \lambda/(\theta+1)^{(\lambda+1)}$, where $\lambda > 0$.
- b) Show that $\delta(X) = X/(r+1)$ is a minimax estimator of θ . [10%]
- 5. Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be two independent random samples from $N(0, \sigma_1^2)$ and $N(0, \sigma_2^2)$, respectively, where $\sigma_1^2, \sigma_2^2 > 0$ are both unknown. Find the 1α (uniformly) most accurate unbiased confidence interval for σ_1^2/σ_2^2 . [10%]
- 6. Let X_1, X_2, \ldots, X_n be i.i.d. Bernoulli (θ) distributed. Find $P(\bar{X}(1-\bar{X}) \leq t)$ asymptotically as $n \to \infty$, where \bar{X} is the sample mean.