

For a given triangle K, let h be the longest side of K, ρ be the diameter of the circle inscribed in K. For a given continuously differentiable function v on K, let the interpolant $\hat{v} \in \Pi_1(K)$ be defined by

$$\hat{v}(a^i) = v(a^i), \quad i = 1, 2, 3.$$

Show that

$$||v - \hat{v}||_{\infty} \le 2h^2 \max_{|\alpha|=2} ||D^{\alpha}v||_{\infty}$$
 (2.1)

and

$$\max_{|\alpha|=1} \|D^{\alpha}(v-\hat{v})\|_{\infty} \le 6 \frac{h^2}{\rho} \max_{|\alpha|=2} \|D^{\alpha}v\|_{\infty}$$
 (2.2)

where α is a multi-index (α_1, α_2) with whole number elements and $|\alpha| = \alpha_1 + \alpha_2$ and

$$D^{\alpha}v = \frac{\partial^{|\alpha|}v}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2}}.$$

And $\|\cdot\|_{\infty}$ is an abbreviation of

$$||v||_{L^{\infty}(K)} = \max_{x \in K} |v(x)|.$$

3. Systems of Linear Equations

Let A be an $n \times n$ square matrix. When A is symmetric and positive definite, the LU-factorization of A becomes the Cholesky decomposition $A = LL^T$, where L is a lower triangular matrix with positive diagonal elements. Describe an algorithm for the Cholesky decomposition and discuss its computational complexities.

4. Parabolic Problems

Consider the model parabolic problem

$$\dot{u} - \Delta u = f \quad \text{in } \Omega \times (0, T),$$

$$u = 0 \quad \text{on } \Gamma \times (0, T),$$

$$u(x, 0) = u_0(x) \quad \text{in } \Omega$$

$$(4.1)$$

where u = u(x,t) for $x \in \Omega$ and $t \in (0,T)$, $\dot{u} = \partial u/\partial t$ and Δu is the Laplacian of u in space.

The semi-discretization (in space) for (4.1) is based on the variational formulation:

Find
$$u(t) \in H_0^1(\Omega)$$
 such that
$$\begin{cases} (\dot{u}(t), v) + a(u(t), v) = (f(t), v) \\ u(0) = u_0 \end{cases} \quad \forall v \in H_0^1(\Omega) \quad (4.2)$$

What is the proper meaning of $a(\cdot, \cdot)$ in (4.2)?

Let V_h be a finite element space in $H_0^1(\Omega)$, describe the semi-discretization of the problem (4.1). And, let $u_h(t) \in V_h$ be the finite element solution of your semi-discretization problem, show the stability property that

$$||u_h(t)|| \le ||u_0||, \quad \text{for } t \in (0, T).$$