Qualifying Exam for Numerical Analysis Dept. of Math, Nat'l Central Univ. Feburary 2, 2018

Problem 1. Let V be a Hilbert space with inner product $\langle \cdot, \cdot \rangle_V$ and corresponding norm $\|\cdot\|_V$, $S_h \subseteq V$ is a finite dimensional subspace, $a: V \times V \to \mathbb{R}$ be a continuous, V-elliptic bilinear form, and $\ell: \mathcal{V} \to \mathbb{R}$ be a bounded linear form.

1. (10%) State the Lax-Milgram theorem and show that there exist unique $u \in V$ and $u_h \in S_h$ satisfying

 $a(u, v) = \ell(v) \quad \forall v \in V \quad \text{and} \quad a(u_h, v) = \ell(v) \quad \forall v \in S_h.$

2. (10%) Show that there exists C > 0 such that $||u - u_h||_V \leq C ||u - v_h||_V$ for all $v_h \in S_h$.

Problem 2. Let $\{x_i\}_{i=0}^N$ be a partition of I = [a, b]; that is, $a = x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b$, and $h = \max\{x_i - x_{i-1} | 1 \le i \le N\}$. Let $\{\phi_i\}_{i=1}^N$ be a collection of continuous functions satisfying

- (a) for $i, j \in \{0, 1, \dots, N\}$, $\phi_i(x_j) = \delta_{ij}$, where δ_{ij} is the Kronecker delta;
- (b) for $i, j \in \{0, 1, \dots, N\}$, ϕ_i is a polynomial of degree 1 in $[x_{j-1}, x_j]$.

Define $S_h = \operatorname{span}(\phi_1, \phi_2, \cdots, \phi_N)$ and $\Pi : C^0(I) \to S_h$ by

$$(\Pi v)(x) = \sum_{j=1}^{N} v(x_j)\phi_j(x) \, .$$

1. (10%) Show that there exists a constant C > 0 such that

$$||v - \Pi v||_{L^2(I)} \le Ch^2 ||v''||_{L^2(I)}$$
 and $||v' - (\Pi v)'||_{L^2(I)} \le Ch ||v''||_{L^2(I)}$

for all $v \in H^2(I)$ satisfying v(a) = 0.

2. (10%) Let $f \in L^2(I)$, and $u \in H^1(I)$ be the unique weak solution to the differential equation

$$-u'' = f$$
 in (a,b) , $u(a) = u'(b) = 0$,

and $u_h \in S_h$ satisfies

$$\int_{I} u_{h}'(x)v_{h}'(x) \, dx = \int_{I} f(x)v_{h}(x) \, dx \qquad \forall v_{h} \in S_{h}$$

Show that there exists a constant C independent of f (and u) such that

$$||u - u_h||_{H^1(I)} \leq Ch ||f||_{L^2(I)}$$

Problem 3. Let $\Omega \subseteq \mathbb{R}^2$ be a bounded, convex, polygonal domain. Consider the parabolic equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$, (0.1a)

$$\frac{\partial u}{\partial N} + u = g$$
 on $\partial \Omega \times (0, T)$, (0.1b)

$$u(x,0) = u_0(x) \qquad \text{for all } x \in \Omega, \qquad (0.1c)$$

where N denotes the outward-pointing unit normal of Ω . The semi-discretization (in space) for (0.1) is based on the variational formulation: Find $u: [0,T] \to H^1(\Omega)$ such that $u(0) = u_0$ and

$$(\dot{u}(t), v)_{L^{2}(\Omega)} + a(u(t), v) = (f(t), v)_{L^{2}(\Omega)} + (g(t), v)_{L^{2}(\partial\Omega)} \qquad \forall v \in H^{1}(\Omega),$$
(0.2)

where $(\cdot, \cdot)_{L^2(\Omega)}$ and $(\cdot, \cdot)_{L^2(\partial\Omega)}$ denote the inner product in $L^2(\Omega)$ and $L^2(\partial\Omega)$, respectively.

- 1. (5%) Provide the explicit form of $a(\cdot, \cdot)$ in (0.2).
- 2. (10%) Let V_h be a finite element space in $H^1(\Omega)$ consisting of piecewise linear functions on a quasi-uniform triangulation of Ω with mesh size h, and $u_h : [0,T] \to V_h$ satisfies

$$(\dot{u}_h(t), v)_{L^2(\Omega)} + a(u_h(t), v) = (f(t), v)_{L^2(\Omega)} + (g(t), v)_{L^2(\partial\Omega)} \qquad \forall v \in V_h.$$
(0.3)

Show the stability property that

$$||u_h(t)||_{L^2(\Omega)} \le ||u_0||_{L^2(\Omega)} \qquad \forall t \in (0,T)$$

if f = g = 0.

3. (10%) Suppose that one use the discontinuous Galerkin method for solving the semi-discrete problem (0.3) by assuming that

$$u_h(t) = (u_0 + tv_1)\mathbf{1}_{[0,\frac{T}{2})}(t) + (v_2 + tv_3)\mathbf{1}_{(\frac{T}{2},T]}(t)$$

for some $v_1, v_2, v_3 \in V_h$. Write down explicitly the relation among v_1, v_2, v_3 .

Problem 4. Let $\Omega \subseteq \mathbb{R}^2$ be a bounded strictly convex domain with outward-pointing unit normal n (which is defined except on the vertices), $\beta \in \mathbb{R}^2$ being a constant vector, and

$$\Gamma_{+} = \left\{ x \in \partial \Omega \, \big| \, n(x) \cdot \beta > 0 \right\}, \quad \Gamma_{-} = \left\{ x \in \partial \Omega \, \big| \, n(x) \cdot \beta < 0 \right\}.$$

Define $V = \{ v \in H^1(\Omega) \mid v = 0 \text{ on } \Gamma_- \}$ and a bilinear form $b : V \times V \to \mathbb{R}$ by

$$b(u,v) = \int_{\Omega} (u + \beta \cdot \nabla u) v \, dx - \int_{\Gamma_{-}} uv(n \cdot \beta) \, dS \quad \text{and} \quad \ell(v) = \int_{\Omega} fv \, dx \, .$$

1. (10%) Suppose that V_h is a finite dimensional subspace of V such that for all $v \in V$ there exists $\tilde{v}_h \in V_h$ satisfying

$$\|v - \widetilde{v}_h\|_{H^1(\Omega)} + \|v - \widetilde{v}_h\|_{L^2(\partial\Omega)} \leqslant Ch \|v\|_{H^2(\Omega)},$$

where C is a generic constant independent of v. Show that if $u \in V$, $u_h \in V_h$ are solutions to

$$b(u + \beta \cdot \nabla u, v) = \ell(v) \quad \forall v \in V \quad \text{and} \quad b(u_h + \beta \cdot \nabla u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h$$

then

$$||u - u_h||_{L^2(\Omega)} + ||u - u_h||_{L^2(\partial \Omega)} \le Ch||u||_{H^2(\Omega)}.$$

2. (10%) Let T_h be a triangulation of Ω , and for $K \in T_h$ we use $P_r(K)$ to denote the collection of polynomials of degree r defined on K. The discontinuous Galerkin method of solving for

$$\begin{split} u + \operatorname{div}(\beta u) &= f & \text{ in } \Omega \,, \\ u &= 0 & \text{ on } \partial \Omega \,, \end{split}$$

can be written as

$$B(u_h, v_h) = (f, v_h)_{L^2(\Omega)} \qquad \forall v \in W_h$$

for some finite dimensional subspace W_h of V. Write down the bilinear form B and the subspace W_h .

Problem 5. (15%) For a triangle $K \subseteq \mathbb{R}^2$, let h_K denote the maximum length of sides of K, and ρ_K be the radius of the maximum disc which is contained in K. Suppose that $K \subseteq \mathbb{R}^2$ is a triangle such that $\rho_K \ge \beta h_K$ for a certain $\beta > 0$. Show that there exists a constant C, depending only on β , such that

$$\|\nabla v\|_{L^2(K)} \leq Ch_K^{-1} \|v\|_{L^2(K)} \qquad \forall v \in P_1(K),$$

where $P_1(K)$ is the collection of polynomials of degree 1 defined on K.