Qualifying Exam for Numerical Analysis

Dept. of Math, Nat'l Central Univ. Feburary 2, 2018

Problem 1. Let V be a Hilbert space with inner product $\langle\cdot, \cdot\rangle_{V}$ and corresponding norm $\|\cdot\|_{V}$, $S_{h} \subseteq V$ is a finite dimensional subspace, $a: V \times V \rightarrow \mathbb{R}$ be a continuous, V-elliptic bilinear form, and $\ell: \mathcal{V} \rightarrow \mathbb{R}$ be a bounded linear form.

1. (10%) State the Lax-Milgram theorem and show that there exist unique $u \in V$ and $u_{h} \in S_{h}$ satisfying

$$
a(u, v)=\ell(v) \quad \forall v \in V \quad \text { and } \quad a\left(u_{h}, v\right)=\ell(v) \quad \forall v \in S_{h} .
$$

2. (10%) Show that there exists $C>0$ such that $\left\|u-u_{h}\right\|_{V} \leqslant C\left\|u-v_{h}\right\|_{V}$ for all $v_{h} \in S_{h}$.

Problem 2. Let $\left\{x_{i}\right\}_{i=0}^{N}$ be a partition of $I=[a, b]$; that is, $a=x_{0}<x_{1}<x_{2}<\cdots<x_{N-1}<$ $x_{N}=b$, and $h=\max \left\{x_{i}-x_{i-1} \mid 1 \leqslant i \leqslant N\right\}$. Let $\left\{\phi_{i}\right\}_{i=1}^{N}$ be a collection of continuous functions satisfying
(a) for $i, j \in\{0,1, \cdots, N\}, \phi_{i}\left(x_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta;
(b) for $i, j \in\{0,1, \cdots, N\}, \phi_{i}$ is a polynomial of degree 1 in $\left[x_{j-1}, x_{j}\right]$.

Define $S_{h}=\operatorname{span}\left(\phi_{1}, \phi_{2}, \cdots, \phi_{N}\right)$ and $\Pi: C^{0}(I) \rightarrow S_{h}$ by

$$
(\Pi v)(x)=\sum_{j=1}^{N} v\left(x_{j}\right) \phi_{j}(x) .
$$

1. (10%) Show that there exists a constant $C>0$ such that

$$
\|v-\Pi v\|_{L^{2}(I)} \leqslant C h^{2}\left\|v^{\prime \prime}\right\|_{L^{2}(I)} \text { and }\left\|v^{\prime}-(\Pi v)^{\prime}\right\|_{L^{2}(I)} \leqslant C h\left\|v^{\prime \prime}\right\|_{L^{2}(I)}
$$

for all $v \in H^{2}(I)$ satisfying $v(a)=0$.
2. (10%) Let $f \in L^{2}(I)$, and $u \in H^{1}(I)$ be the unique weak solution to the differential equation

$$
-u^{\prime \prime}=f \quad \text { in }(a, b), \quad u(a)=u^{\prime}(b)=0,
$$

and $u_{h} \in S_{h}$ satisfies

$$
\int_{I} u_{h}^{\prime}(x) v_{h}^{\prime}(x) d x=\int_{I} f(x) v_{h}(x) d x \quad \forall v_{h} \in S_{h} .
$$

Show that there exists a constant C independent of f (and u) such that

$$
\left\|u-u_{h}\right\|_{H^{1}(I)} \leqslant C h\|f\|_{L^{2}(I)} .
$$

Problem 3. Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded, convex, polygonal domain. Consider the parabolic equation

$$
\begin{align*}
\partial_{t} u-\Delta u & =f & & \text { in } \quad \Omega \times(0, T), \tag{0.1a}\\
\frac{\partial u}{\partial \mathrm{~N}}+u & =g & & \text { on } \quad \partial \Omega \times(0, T), \tag{0.1b}\\
u(x, 0) & =u_{0}(x) & & \text { for all } x \in \Omega, \tag{0.1c}
\end{align*}
$$

where N denotes the outward-pointing unit normal of Ω. The semi-discretization (in space) for (0.1) is based on the variational formulation: Find $u:[0, T] \rightarrow H^{1}(\Omega)$ such that $u(0)=u_{0}$ and

$$
\begin{equation*}
(\dot{u}(t), v)_{L^{2}(\Omega)}+a(u(t), v)=(f(t), v)_{L^{2}(\Omega)}+(g(t), v)_{L^{2}(\partial \Omega)} \quad \forall v \in H^{1}(\Omega) \tag{0.2}
\end{equation*}
$$

where $(\cdot, \cdot)_{L^{2}(\Omega)}$ and $(\cdot, \cdot)_{L^{2}(\partial \Omega)}$ denote the inner product in $L^{2}(\Omega)$ and $L^{2}(\partial \Omega)$, respectively.

1. (5%) Provide the explicit form of $a(\cdot, \cdot)$ in (0.2).
2. (10%) Let V_{h} be a finite element space in $H^{1}(\Omega)$ consisting of piecewise linear functions on a quasi-uniform triangulation of Ω with mesh size h, and $u_{h}:[0, T] \rightarrow V_{h}$ satisfies

$$
\begin{equation*}
\left(\dot{u_{h}}(t), v\right)_{L^{2}(\Omega)}+a\left(u_{h}(t), v\right)=(f(t), v)_{L^{2}(\Omega)}+(g(t), v)_{L^{2}(\partial \Omega)} \quad \forall v \in V_{h} \tag{0.3}
\end{equation*}
$$

Show the stability property that

$$
\left\|u_{h}(t)\right\|_{L^{2}(\Omega)} \leqslant\left\|u_{0}\right\|_{L^{2}(\Omega)} \quad \forall t \in(0, T)
$$

if $f=g=0$.
3. (10%) Suppose that one use the discontinuous Galerkin method for solving the semi-discrete problem (0.3) by assuming that

$$
u_{h}(t)=\left(u_{0}+t v_{1}\right) \mathbf{1}_{\left[0, \frac{T}{2}\right)}(t)+\left(v_{2}+t v_{3}\right) \mathbf{1}_{\left(\frac{T}{2}, T\right]}(t)
$$

for some $v_{1}, v_{2}, v_{3} \in V_{h}$. Write down explicitly the relation among v_{1}, v_{2}, v_{3}.
Problem 4. Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded strictly convex domain with outward-pointing unit normal n (which is defined except on the vertices), $\beta \in \mathbb{R}^{2}$ being a constant vector, and

$$
\Gamma_{+}=\{x \in \partial \Omega \mid n(x) \cdot \beta>0\}, \quad \Gamma_{-}=\{x \in \partial \Omega \mid n(x) \cdot \beta<0\}
$$

Define $V=\left\{v \in H^{1}(\Omega) \mid v=0\right.$ on $\left.\Gamma_{-}\right\}$and a bilinear form $b: V \times V \rightarrow \mathbb{R}$ by

$$
b(u, v)=\int_{\Omega}(u+\beta \cdot \nabla u) v d x-\int_{\Gamma_{-}} u v(n \cdot \beta) d S \quad \text { and } \quad \ell(v)=\int_{\Omega} f v d x
$$

1. (10%) Suppose that V_{h} is a finite dimensional subspace of V such that for all $v \in V$ there exists $\widetilde{v}_{h} \in V_{h}$ satisfying

$$
\left\|v-\widetilde{v}_{h}\right\|_{H^{1}(\Omega)}+\left\|v-\widetilde{v}_{h}\right\|_{L^{2}(\partial \Omega)} \leqslant C h\|v\|_{H^{2}(\Omega)}
$$

where C is a generic constant independent of v. Show that if $u \in V, u_{h} \in V_{h}$ are solutions to

$$
b(u+\beta \cdot \nabla u, v)=\ell(v) \quad \forall v \in V \quad \text { and } \quad b\left(u_{h}+\beta \cdot \nabla u_{h}, v_{h}\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

then

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)}+\left\|u-u_{h}\right\|_{L^{2}(\partial \Omega)} \leqslant C h\|u\|_{H^{2}(\Omega)}
$$

2. (10%) Let T_{h} be a triangulation of Ω, and for $K \in T_{h}$ we use $P_{r}(K)$ to denote the collection of polynomials of degree r defined on K. The discontinuous Galerkin method of solving for

$$
\begin{aligned}
u+\operatorname{div}(\beta u)=f & \text { in } \quad \Omega, \\
u=0 & \text { on } \quad \partial \Omega,
\end{aligned}
$$

can be written as

$$
B\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{L^{2}(\Omega)} \quad \forall v \in W_{h}
$$

for some finite dimensional subspace W_{h} of V. Write down the bilinear form B and the subspace W_{h}.

Problem 5. (15\%) For a triangle $K \subseteq \mathbb{R}^{2}$, let h_{K} denote the maximum length of sides of K, and ρ_{K} be the radius of the maximum disc which is contained in K. Suppose that $K \subseteq \mathbb{R}^{2}$ is a triangle such that $\rho_{K} \geqslant \beta h_{K}$ for a certain $\beta>0$. Show that there exists a constant C, depending only on β, such that

$$
\|\nabla v\|_{L^{2}(K)} \leqslant C h_{K}^{-1}\|v\|_{L^{2}(K)} \quad \forall v \in P_{1}(K),
$$

where $P_{1}(K)$ is the collection of polynomials of degree 1 defined on K.

