國立中央大學數學系 博士班資格考試

<機率論>試題 2002年9月

- Let (Ω, F, P) be a probability space and N₀ be the set of all null sets in (Ω, F, P). Show that for any Borel subfield F₁ of F, there exists a minimal Borel field F₂ satisfing F₁ ⊂ F₂ ⊂ F and N₀ ⊂ F₂.
 (A set E belongs to F₂ if and only if there exists a set F in F, such that E △F ∈ N₀.)
 (10%)
- 2. Let Y be a nonnegative random variable and k > 0. Show that $E(Y^k) = \int_0^\infty k y^{k-1} \mathcal{P}(Y > y) dy$.
- 3. (a) What is the (1st) Borel-Cantelli Lemma? Prove or disprove the converse of the Borel-Cantelli lemma.
 - (b) Show that $X_n \to X$ in probability if and only if for every subsequence $X_{n(m)}$ there is a further subsequence $X_{n(m_k)}$ that converges almost surely to X.

(15%)

- 4. (a) What is the Kolmogorov's Three Series Theorem?
 - (b) Show that if X_1, X_2, \cdots are independent with $EX_n = 0$ and $\sum_{n=1}^{\infty} (X_n^2 I_{(|X_n| \le 1)} + |X_n| I_{(|X_n| > 1)}) < \infty$ then $\sum_i X_n$ converges.

(10%)

5. (a) Let X_1, X_2, \cdots be independent and let $\alpha_n = (Var S_n)^{1/2}$, where $S_n = X_1 + \cdots + X_n$. If there is a $\delta > 0$ so that $\lim_{n \to \infty} \alpha_n^{-(2+\delta)} \sum_{m=1}^n E(|X_m - EX_m|^{2+\delta}) = 0$, show that $(S_n - ES_n)/\alpha_n$ converges in distribution to the unit normal.