

2007.9

Probability Qualify Examination

- 1. Let $\mathcal F$ be a σ -algebra on Ω and let δ be a π -system with $\sigma(\delta) = \mathcal F$. If P and Q are probabilities on $\mathcal F$, such that P = Q on δ , show that P = Q on $\mathcal F$.
- 2. Let X and Y be random variables and let A be an event. Prove that the function $Z = XI_A + YI_{A^C}$ is a random variable.
- 3. Prove that for $X \ge 0$, $\sum_{k=1}^{\infty} P\{X \ge k\} \le E(X) \le \sum_{k=0}^{\infty} P(X \ge k)$.
- 4. Let X be a P(λ) (Poisson distribution with parameter λ), show that $P(X \ge 2\lambda) \le (\frac{e}{4})^{\lambda}$.
- 5. Let $X_1, X_2, ...$ be pairwise uncorrelated with mean 0 and partial sums $S_n = \sum_{k=1}^n X_k$. Prove that if there is a constant c such that $Var(X_k) \le c$ for every k, then $\frac{S_n}{n^{\alpha}} \xrightarrow{q.m.} 0$ for all $\alpha > 1/2$.
- 6. Let $X_1, X_2, ...$ be i.i.d. and integer-valued, with partial sums $S_n = \sum_{i=1}^n X_i$. Prove that for each n and k, $P(S_n = k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} \phi_X(t)^n dt$, where $\phi_X(t)$ is the characteristic function of X.
- 7. Let $X_1, X_2, ...$ be independent random variables, $\sigma_n^2 = \text{var}(X_n)$.

 If there is a constant c such that $P\{|X_k| \le c\} = 1$ for each k and if $\sigma_n^2 \to \infty$ as $n \to \infty$. Show that the Lindeberg condition is satisfied.