

(b) If X_1, X_2, \cdots are independent with $|X_i| \leq M$ and $\sum_{n=1}^{\infty} Var(X_n) = \infty$, show that there are constants a_n, b_n so that $(S_n - b_n)/a_n$ converges to the normal distribution.

(15%)

- 6. Show that
 - (a) $\mu(\lbrace a \rbrace) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt$, where $\varphi(t)$ is the characteristic function of the propability measure $\mu(\cdot)$.
 - (b) $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\varphi(t)|^2 dt = \sum_{X \in R} \mu(\{X\})^2$.

(Hint:you may use (a) and consider the random variable X-Y, where X,Y are iid.) (15%)

- 7. Suppose that X is an integrable random variable on $(\Omega, \mathcal{F}, \mathcal{P})$ and that \mathcal{G} is sub- σ -field in \mathcal{F} . Show that (15%)
 - (i) there is a random variable $E_{\mathcal{G}}(X)$, called the conditional expectation of X given \mathcal{G} , which has the following two properties:
 - (a) $E_{\mathcal{G}}(X)$ is integrable w.r.t. \mathcal{G} , and
 - (b) $\int_G E_{\mathcal{G}}(X) d\mathcal{P} = \int_G X d\mathcal{P}$ for all $G \in \mathcal{G}$.
 - (ii) If \mathcal{G}_1 and \mathcal{G}_2 are σ -fields such that $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{F}$, then $E_{\mathcal{G}_1}[E_{\mathcal{G}_2}(X)] = E_{\mathcal{G}_1}(X)$.
 - (iii) If $EX^2 < \infty$, then $E_{\mathcal{G}}(X)$ is the projection of X from $L^2(\mathcal{F})$ onto to $L^2(\mathcal{G})$, where $L^2(\mathcal{F}) = \{Y \in \mathcal{F} : EY^2 < \infty\}.$
- 8. (a) What is the Martingale Convergence Theorem?
 - (b) Show that if $X_n \geq 0$, $n \geq 0$, is a supermartingale, then $X_n \to X$ a.s. and $EX \leq EX_0$.

(10%)