- (7) Let $\{X_{nj}, 1 \leq j \leq k_n\}$ be a double array of rowwise independent random variables, where $k_n \to \infty$ as $n \to \infty$. Suppose that for each n and j there is a finite constant M_{nj} such that $\left|X_{nj}\right| \leq M_{nj}$ and that $\max_{1 \leq j \leq k_n} M_{nj} \to 0$. Show that $\frac{S_n ES_n}{\sigma_n}$ converges in distribution to the standard normal distribution, where $S_n = X_{n1} + X_{n2} + ... + X_{nk_n}$ and $\sigma_n^2 = \{\operatorname{Van}(S_n)\}$.
- (8) Let $\{X_n\}$ be a sequence of independent, identically distributed random variables and $N(\lambda)$ be an independent Poisson random variables with mean λ . Show that $W = X_1 + X_2 + ... + X_{N(\lambda)}$ has an infinitely divisible distribution.
- (9) Let X be a random variable on Ω the probability space, let $A_1, A_2, ..., A_n$ be a partition of Ω into disjoint sets each of which has positive probability, and let $F = \sigma(A_1, A_2, ..., A_n)$ be the σ field of generated by these sets. Find E(X|F) the conditional expectation of X given F, and give the explanation.
- (10) Let $\xi_i^n, i, n \ge 0$ be independent, identically distributed nonnegative integer valued random variables. Define a sequence Z_n , $n \ge 0$ by $Z_0 = 1$ and $Z_{n+1} = \xi_1^{n+1} + \xi_2^{n+1} + \ldots + \xi_{Z_n}^{n+1}$ if $Z_n > 0$, and $Z_{n+1} = 0$ if $Z_n = 0$. Let $F_n = \sigma(\xi_i^m : i \ge 1, \ 1 \le m \le n)$ be the σ field of generated by these random variables and $\mu = E\xi_i^m$. Show that $\frac{Z_n}{\mu^n}$ is a martingale with respect to F_n .