8. Let $X_1, X_2, ...$ be i.i.d. with $E(X_1) = \mu, \text{var}(X_1) = \sigma^2$ and finite fourth central moment $\mu_4 = E[(X_1 - \mu)^4]$. Define the sample variance $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$,

檔

where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is the sample mean. Prove that

$$\frac{\sqrt{n}(S_n^2 - \sigma^2)}{\sqrt{\mu_4 - \sigma^4}} \xrightarrow{d} N(0,1).$$

- 9. Let $X, Y \in L^2$ be such that $E(X \mid Y) = Y$ and $E(Y \mid X) = X$. Prove that X = Y.
- 10. Let X be a submartingale with respect to Y. Prove that for each n and each a > 0,

$$P\{\max_{1\leq k\leq n}X_k\geq a\}\leq \frac{1}{a}\,E(X_n;\{\max_{1\leq k\leq n}X_k\geq a\})\leq \frac{E(X_n^+)}{a}\,.$$