Department of Mathematics National Central University Probability Qualifying Examination

August 31, 2018

Instructions: This is a closed book exam. There are 10 problems, of which you should turn in solutions for exactly 6 problems. Correct and complete solutions to 4 problems guarantees a pass. On the first page of your exam sheet, indicate which 6 you have attempted. If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial. Ill-explanation may cause NO points. It is your responsibility to write answers in a proper way.

Problem (1) Suppose the probability space is $([0,1], \mathcal{B}, \lambda)$ where \mathcal{B} is the Borel σ-field on $[0,1]$ and λ is Lebesgue measure.

$$
X=\left\{\begin{array}{ll}
0, & \text { for } x \in[0,1 / 2) ; \\
1, & \text { for } x \in[1 / 2,1] .
\end{array} \quad \text { and } \quad Y= \begin{cases}2, & \text { for } x \in[0,1 / 4) \bigcup[1 / 2,3 / 4) \\
3, & \text { for } x \in[1 / 4,1 / 2) \bigcup[3 / 4,1]\end{cases}\right.
$$

Are X and Y independent?
Problem (2) Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ are i.i.d. random variables with mean zero and $E\left[X_{1}^{4}\right]<\infty$. Define $S_{n}=\sum_{k=1}^{n} X_{k}$ for $n \geq 1$. Show that for every ϵ

$$
P\left\{\left|S_{n}\right|>n \epsilon\right\} \leq \frac{C}{n^{2} \epsilon^{4}} \text { for some } C>0
$$

Problem (3) Let $X_{1}, X_{2}, X_{3}, \ldots$ be i.i.d. Gaussian random variables with mean zero and variance one. We set

$$
S_{n}:=\sum_{k=1}^{n} X_{i} \text { and } M_{n}:=\exp \left(S_{n}-\frac{n}{2}\right) \text { for all } n \geq 1
$$

Define $\Lambda(k):=\limsup _{n \rightarrow \infty}\left(\ln E\left[M_{n}^{k}\right]\right) / n$. Show that

$$
\frac{\Lambda(k)}{k} \text { is strictly increasing in } k \text { if } k \geq 2
$$

and $\lim _{n \rightarrow \infty} M_{n}$ exists and find its limit. (You can use consequences from other problems.)
Problem (4) Let S_{n} be a symmetric simple random walk starting at 0, i.e., $S_{0}=0$, $S_{n}:=\sum_{k=1}^{n} X_{k}$ for $n \geq 1$, where $X_{1}, X_{2}, X_{3}, \ldots$ are i.i.d. random varibales with $P\left\{X_{1}=\right.$ $1\}=P\left\{X_{1}=-1\right\}=1 / 2$. Define $T=\inf \left\{n \geq 0: S_{n}=a\right.$ or $\left.-b\right\}$, where a and b are positive integers. Find $\mathrm{E}[\mathrm{T}]$.

Problem (5) Let (X, Y) be an absolutely continuous random variable with continuous density $f(x, y)$ and $E|X|<\infty$. Prove that

$$
E[X \mid Y]=\frac{\int_{-\infty}^{\infty} x f(x, Y) d x}{\int_{-\infty}^{\infty} f(x, Y) d x} a . s .
$$

Problem (6) Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ are independent random variables. And for $k \geq 1, X_{k}$ is uniform on $[0, k]$. Define $S_{n}=\sum_{k=1}^{n} X_{k}$. Prove that

$$
\frac{4 S_{n}-n(n+1)}{n^{3 / 2}} \text { converges weakly. }
$$

Problem (7) Prove that if $X \in L^{p}$ for some $p>0$, then

$$
\lim _{t \rightarrow \infty} t^{p} P\{|X|>t\}=0
$$

Problem (8) Suppose that X and Y are a.s. non-negative random variables such that

$$
P\{X>t\} \leq \frac{1}{t} E\left[Y 1_{\{X \geq t\}}\right] \text { for all } t>0
$$

Prove that if $p>1$,

$$
\left(E\left[X^{p}\right]\right)^{1 / p} \leq\left(\frac{p}{p-1}\right)\left(E|Y|^{p}\right)^{1 / p} .
$$

Problem (9) If X_{n} converges weakly to X and the $\left\{X_{n}, n \geq 1\right\}$ are uniformly integrable, show that X is integrable and $E\left[X_{n}\right] \rightarrow E[X]$ as $n \rightarrow \infty$.

Problem (10) Let $X_{1}, X_{2}, X_{3}, \ldots$ be non-negative and i.i.d. random variables. If $\left(\sum_{k=1}^{n} X_{k}\right) / n$ converges a.s. to a finite limit. Show that $E\left[X_{1}\right]$ is finite and the limit equals $E\left[X_{1}\right]$ a.s.

