Probability Qualifying Examination

August 29, 2014

This is a closed book exam. There are 10 problems, of which you should turn in solutions for **exactly** 6 problems. **Correct and complete** solutions to 4 problems guarantees a pass. On the first page of your exam sheet, indicate which 6 you have attempted.

Problem (1) Let X and Y be random variables with joint density f(x, y) and g be a measurable function from \mathbb{R} to \mathbb{R} such that $E[g(X)] < \infty$, find E[g(X)|Y = y].

Problem (2) Prove the Paley–Zygmund inequality: Suppose that $Z \ge 0$ be a random variable with finite variance. If $0 < \theta < 1$, then

$$P[Z \ge \theta E[Z]] \ge (1-\theta)^2 \frac{(E[Z])^2}{E[Z^2]}$$

Problem (3) Suppose $\{X_n, n \ge 1\}$ are i.i.d. and Poisson distributed with parameter λ , i.e., $P\{X_1 = n\} = e^{-\lambda} \lambda^n / n!$ for $n \ge 0$. Prove

$$\frac{\lambda^n}{n!}e^{-\lambda} \le P[X_1 \ge n] \le \frac{\lambda^n}{n!},$$

and therefore

$$P\left[\limsup_{n \to \infty} \frac{X_n}{\log n / \log \log n} = 1\right] = 1.$$

Problem (4) Suppose that $\{X_n : n \ge 1\}$ is a sequence of independent random variables with distribution:

$$P\{X_n = 1\} = P\{X_n = -1\} = \frac{1}{2}\left(1 - \frac{1}{n^{\frac{3}{2}}}\right)$$

and

$$P\{X_n = n^2\} = P\{X_n = -n^2\} = \frac{1}{2n^{\frac{3}{2}}}$$

Define $S_n := \sum_{j=1}^n X_j$. Prove that S_n / \sqrt{n} converges to a normal distribution with mean m and variance σ^2 , and find m and σ^2 .

Problem (5) Let X and Y be two random variables, both of which are defined on a common probability space (Ω, \mathcal{F}, P) . Define

$$X_n = \sum_{j=-\infty}^{\infty} \left(\frac{j}{2^n}\right) \mathbb{1}_{\{X \in [j2^{-n}, (j+1)2^{-n})\}}$$

Prove that for any $Y \in L^1(P)$, $\lim_{n\to\infty} E[Y|X_n] = E[Y|X]$ a.s. and in $L^1(P)$.

Problem (6) Consider three types of convergence: convergence a.s., in probability and in L^p . Indicate which of these types of convergence **can** or **cannot** imply which; if it fails to imply, give an example.

Problem (7) Suppose F_n has density

$$f_n(x) = \begin{cases} 1 - \cos(2n\pi x), & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Show that F_n converges weakly to the uniform distribution on [0, 1] but that the densities f_n do not converge.

Problem (8) Suppose that $\{X_n, n \ge 1\}$ are i.i.d. with a symmetric distribution. Then $\sum_{n=1}^{\infty} X_n/n$ converges almost surely iff $E[|X_1|] < \infty$.

Problem (9) Let X be a random variable with $P\{X = n\} = p_n \ n \ge 1$ where $\sum_{n=1}^{\infty} p_n = 1$. Express the $\sum_{n=1}^{\infty} p_n^2$ in terms of the characteristic function of X, i.e., $E[e^{i\xi X}]$.

Problem (10) Let $\{X_j, j \ge 1\}$ be a sequence of i.i.d. random variables with $P\{X_j = 1\} = P\{X_j = -1\} = 1/2$. Define a random walk $S_n := \sum_{j=1}^n X_j, n \ge 1$ and $S_0 = 0$. Consider the first time that the random walk S_n hits m > 0, i.e., $\tau_m := \inf\{n \ge 0 : S_n = m\}$. Compute $P\{\tau_m < \tau_{-2m}\}$.