Probability Qualifying Examination January 2013

There are two groups and 6 problems in each. You choose exact 3 problems in each group and turn in solutions. Indicate the problems you have chosen on the front page of your answer book. Each problem is worth 10 points.

Group A

Choose three and only three problems from this group and write down the numbers you choose in your answer book.

A1 Let X_n be independent Poisson distributed random variables with mean λ_n . Assume

$$\sum_{n} \lambda_n = \infty.$$

Denote

$$S_n = X_1 + X_2 + \dots + X_n, \ \mu_n = \sum_{j=1}^n \lambda_j, \ \sigma_n = \sqrt{\mu_n}.$$

Prove as $n \to \infty$, $\frac{S_n - \mu_n}{\sigma_n}$ converges to standard normal (normal distribution with mean 0 and variance 1) in distribution.

A2 Let $\{X_n, n \geq 1\}$ be a sequence of iid random variables. The distribution function of X_i is given by F,

$$F(x) = P(X_1 \le x), \ x \in R.$$

The empirical distribution function is defined by

$$F_n(x,\omega) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{X_j(\omega) \le x},$$

where $\mathbf{1}_{X_j(\omega) \leq x} = 1$ if $X_j(\omega) \leq x$ and 0, otherwise. Define

$$D_n(\omega) = \sup_{x} |F_n(x,\omega) - F(x)|. \ n \to \infty$$

Prove $D_n \to 0$ almost surely as $n \to \infty$.

A3 Let $\{X_n, n \geq 1\}$ be independent random variables with

$$E[X_n] = 0, \ E[X_n^2] = \sigma_n^2.$$

Define

$$S_n = \sum_{j=1}^n X_j.$$

(a) Prove $\{S_n, n \geq 1\}$ is L^2 -convergence as $n \to \infty$ if and only if

$$\sum_{j=1}^{\infty} \sigma_j^2 < \infty.$$

(b) If

$$\sum_{j=1}^{\infty} \sigma_j^2 < \infty,$$

then $\{S_n, n \geq 1\}$ is almost surely convergence as $n \to \infty$.

A4 Let $\{X_n, n \geq 1\}$ be a sequence of iid random variables with exponential distribution

$$P(X_n \ge x) = \exp(-x), x \ge 0.$$

Define

$$M_n = \max\{X_1, X_2, \cdots, X_n\}.$$

Show $M_n - \log n$ converges in distribution to a random variable Y, where

$$P(Y \le x) = \exp(-e^{-x}).$$

(**Hint:** Calculate $P(M_n - \log n \le x)$)

A5 Let $\{X_n, n \geq 1\}$ be a sequence of iid random variables with finite second moment. Denote

$$E[X_1] = \mu, \ E[(X_1 - \mu)^2] = \sigma^2.$$

Assume the law of large number and also the central limit theorem are known. Set

$$\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j,$$

 \bar{X}_n is the emperical sample mean. Denote Y a standard normal random variable. Prove

$$\sqrt{n}((\bar{X}_n)^2 - \mu^2)$$

converges in distribution to $2\mu\sigma Y$.

A6 Suppose the probability space $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$, where $\mathcal{B}([0, 1])$ is the collection of Borel subsets of [0, 1], λ is the Lebesgue measure on [0, 1]. For each n, \mathcal{B}_n is the σ -field on [0, 1] generated by $B_k^{(n)}$, $k = 0, 1, \dots, 2^n - 1$. For $k = 0, 1, \dots, 2^n - 2$,

$$B_k^{(n)} = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right),$$

and $B_{2^{n}-1}^{(n)} = [\frac{2^{n}-1}{2^{n}}, 1]$. Let f be an integrable function defined on [0, 1]. Show for each n, $f_n = E[f|\mathcal{B}_n]$ is a step function on [0, 1] and f_1, f_2, \cdots is a martingale with respect to $\mathcal{B}_1, \mathcal{B}_2, \cdots$. State the martingale convergence theorem and the martingale inequality for $\{f_n, n \geq n\}$.

Group B

Choose three and only three problems from this group and write down the numbers you choose in the answer book.

B1 Let X_n , $n = 1, 2, \cdots$ be iid integrable. Denote

$$S_n = X_1 + X_2 + \cdots + X_n.$$

Prove $\{S_n/n; n \geq 1\}$ is uniformly integrable.

B2 Suppose $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables on a probability space (Ω, \mathcal{F}, P) and define the induced random walk by

$$S_0 = 0, S_1 = X_1, S_2 = X_1 + X_2, \dots, S_n = \sum_{i=1}^n X_i, n = 1, 2, \dots$$

Let

$$\tau = \inf\{n > 0; S_n > 0\}$$

be the first upgoing ladder time. Assume we know $\tau(\omega) < \infty$ for all $\omega \in \Omega$. (a) Prove τ is a random variable. (b) Prove S_{τ} is a random variable.

B3 Suppose $\{A_n\}$ are independent events satisfying $P(A_n) < 1$ for all n. Show

$$P(\bigcup_{n=1}^{\infty} A_n) = 1$$
 iff $P(A_n \text{ i.o}) = 1$.

B4 Let ϕ be the characteristic function of a real valued random variable. (a) Prove ϕ must be uniformly continuous. (b) Assume the random variable is integrable. Prove ϕ is continuous differentiable. (c) Assume as $t \to 0$,

$$\frac{\phi(t) + \phi(-t) - 2}{t^2}$$

has finite limit. Prove the random variable is in L^2 .

B5 Let X_n , $n = 1, 2, \cdots$ be iid with uniform distribution on [0, 1]. That is,

$$P(X_n \le x) = x, \ 0 < x < 1.$$

Show

$$\max(X_1, X_2, \cdots, X_n)$$

converges to 1 almost surely. Prove also

$$\min(X_1, X_2, \cdots, X_n)$$

converges to 0 almost surely as $n \to \infty$.

B6 Suppose X_1, X_2 are iid unit exponential random variables. That is,

$$P(X_1 > x) = P(X_2 > x) = \exp(-x).$$

Calculate (a) $P(X_1 < 3|X_1 + X_2)$ and (b) $E[X_1|\min(X_1, 1)]$.